
Girls Who Code At Home
Meteor Catcher Game: Part 4

Catch the Meteor

2

Activity Overview
At the end of Part 3, you learned how to create and use variables in
p5.js to move the meteor across the screen at a specified speed.
It’s time to get interactive! In this part, you will learn how to add
player input by programming a catcher that responds to mouse
movement. This catcher is a translucent white ellipse that moves
with the mouse. Click here to preview what you will learn by the end
of the activity.

PART 5
Add a

Randomizer

Add
randomness to

make your
game more
challenging

and fun!

PART 2
Draw the
Meteor

Build a basic
shape to

represent your
meteor update

the style,
location, size,
and color of
your meteor.

PART 3
Make the
Meteor
Fall

Simulate
motion for your
meteor using

variables

PART 4
Catch the
Meteor

Build a catcher
that follows

your mouse to
catch the

falling meteors.

PART 1
Planning +
Intro to
p5.js

Identify the
parts of a

game and learn
about the
basics of

program flow in
p5.js

Materials
➔ p5.js Online Editor
➔ Meteor Catcher Game Sample Project
➔ Meteor Catcher Game Part 4 Reference

Guide

Learning Goals
By the end of this activity you will be able to...

❏ describe how to simulate basic motion in a
program.

❏ program different behaviors into elements
using variables and arithmetic operators.

You should have already completed Part 1, Part 2,
and Part 3 of the Meteor Catcher Game Series before

embarking on this activity.

You can also follow along with Part 4 and Part 5
in the Meteor Catcher Game video tutorials!

https://editor.p5js.org/GWCEducation/embed/G_uqmSHAy
https://editor.p5js.org/
https://editor.p5js.org/GWCEducation/present/NFjNmEEqP
https://drive.google.com/file/d/1o7c2pyy0W5ya3B53zIj1E4HGYK5q272O/view?usp=sharing
https://drive.google.com/file/d/1o7c2pyy0W5ya3B53zIj1E4HGYK5q272O/view?usp=sharing
https://girlswhocode.com/assets/downloads/craft-prod/downloads/Girls-Who-Code-At-Home-Meteor-Catcher-Part-1.pdf
https://girlswhocode.com/assets/downloads/craft-prod/downloads/Girls-Who-Code-At-Home-Meteor-Catcher-Part-2-1.pdf
https://girlswhocode.com/assets/downloads/craft-prod/downloads/Girls-Who-Code-At-Home-Meteor-Catcher-Part-3.pdf
https://www.youtube.com/playlist?list=PLxuXeImzB_r0WKEWpWFPDVI0p3zx9BKQm

3

Women in Tech Spotlight: Rebecca Cohen Palacios

While co-directing Pixelles, Rebecca also currently works at Behaviour Interactive as a Senior UI Designer.
Prior to her start in the gaming industry at Ubisoft, Rebecca spent 6 years as a Graphic and Web
Developer.

Learn more about Rebecca and how her work with Pixelles seeks to close the gender gap in the gaming
industry!
● "Pixelles is Helping Mid-Career Mothers Stay in Games"
● "Top 7 Reasons Women Quit Game Development"
● "Montreal non-profit gives women a chance to break into male-dominated video game industry"
● "Empowerment Through Game Development": The Pixelles Game Incubator"

Reflect
Being a computer scientist is more than just being great at coding. Take some time to reflect on how
Rebecca and her work relates to the strengths that great computer scientists focus on building - bravery,
resilience, creativity, and purpose.

Share your responses with a family member or friend. Encourage others to read more about
Rebecca to join in the discussion!

If you have ever played the following video games – Elder Scrolls: Blades,
Assassin’s Creed Origins, Assassin's Creed Syndicate, or Shape Up (Kinect) –
then you have viewed some of the work that Rebecca has contributed to create!
More women are working in the gaming industry, and part of this is due to the
work of Rebecca and the organization she has co-founded with Tanya Short,
Pixelles.

Pixelles is a non-profit organization dedicated to encouraging more women in
game development. Rebecca noticed that, in addition to video games still being
perceived as a “for boys,” there was also a large percentage of women in the
gaming industry who left the field due to bias, a lack of support, and the glass
ceiling. Pixelles tackles these issues by offering aspiring and mid-career
women through free monthly workshops, mentorship, “make your first game”
programs, a career accelerator, networking socials, and much more…

RESILIENCE

What are the struggles that women face in the gaming industry? How does
Pixelles help women persevere in their careers?

Image Source:
GamesIndustry.biz

https://www.bhvr.com/
https://pixelles.ca/about/
https://www.gamesindustry.biz/articles/2019-08-12-pixelles-is-helping-mid-career-mothers-stay-in-games
https://www.gamasutra.com/view/news/356804/The_top_7_reasons_women_quit_game_development.php
https://www.cbc.ca/news/canada/montreal/montreal-pixelles-game-incubator-1.4470896
https://www.gamesindustry.biz/articles/2014-11-14-pixelles-game-incubator
https://pixelles.ca/about/
https://www.gamesindustry.biz/articles/2019-08-12-pixelles-is-helping-mid-career-mothers-stay-in-games

4

Step 1: Add the Catcher (5-10 mins)
Draw the Catcher (3-5 mins)

First, we need to draw the catcher to screen using the ellipse() function. Just as we did with the
meteor, we will use variables to store the width and height of the catcher. We will use special variables
for the x and y position in the next step, so we don’t need to create variables to store these values.

❏ Add a new variable above setup()to store the width and
height of our catcher. Since our catcher is a circle, we will
use the same value for both. We named our variable
catcherDiameter but you can name it whatever you like. Just
be sure you reference it correctly later in your code.

❏ Assign your catcher width and height variable a value of 40.

❏ In the draw() function, draw the catcher using the
ellipse() function. Add this under your code for the
meteor. Add a short comment to remind yourself that this is
the catcher.

❏ Set the x and y parameters to 200, then set the width and
height parameters to the variable you created above.

❏ Run your code.

You should see a teal circle in
the middle of the canvas:

Change the catcher color (3-5 mins)

We want our catcher to be white and semi-transparent so we can see our meteor through the catcher.
This means we need to use our fill() function yet again! Earlier we mentioned that fill() will add
color to all shapes below that command until you tell the program otherwise - sort of like cleaning a
paintbrush and dipping it in another color.
❏ Create a new fill() function above the catcher ellipse.

This will apply the new color to all shapes below it.

❏ Add the RGB values to make your catcher white.

❏ Add a fourth parameter to control the transparency and set
this value to 100. This optional parameter is called an alpha
value. You can set to any value between 0 and 255 with 0
being completely transparent and 255 being opaque. You
can try tinkering with a few different values to understand
how it changes the display of the catcher.

❏ Run your code.

You should see the color of the catcher change to a semi-transparent white. In the image below, the
catcher may appear gray. Since it is semi-transparent, some of the background color leaks through.

Don’t forget to check your code with the Reference Guide on pg 2.

https://p5js.org/reference/#/p5/fill

5

Step 2: Add player input (2-4 mins)
Right now, the catcher isn’t doing much catching. We want a player to be able to control its movement
using the mouse. This means we need to find a way to change the x and y values of the catcher so they
match the x and y values of the mouse.

Luckily for us, there are two variables built into p5.js that do this for us! The variables mouseX and
mouseY contain the position of the horizontal and vertical position of the mouse. Try moving your
mouse in the example sketch to see how the values change.

We can use mouseX and mouseY to attach the catcher to the mouse. This means that the x and y
position of the mouse becomes the x and y position of the catcher. Let’s update our catcher:

❏ Replace the current value of x in your catcher ellipse with mouseX.

❏ Replace the current value of y in your catcher ellipse with mouseY.

https://p5js.org/reference/#/p5/mouseX
https://p5js.org/reference/#/p5/mouseY
https://editor.p5js.org/GWCEducation/embed/9wg6yRZdg
https://editor.p5js.org/GWCEducation/embed/9wg6yRZdg

6

Step 3: Test your code (2-5 mins)
Let’s test what we have written so far to make sure our program runs the way we want it to. Click the
play button to run your sketch. You should have:

➔ A catcher that follows the movement of your mouse.
➔ The catcher should be white in color and semi-transparent.
➔ You should not have a Replay button.

Click here to run the example sketch.
Note: We included a replay button so you can
reset the meteor's behavior. If we did not
include this, you would see only a black box
once the meteor fell off the bottom of the
screen. We will fix this in the next part with a
conditional, but we're not there yet!

Not working the way you want it to? Try these debugging tips:

➔ Is your code inside the correct curly brackets?
➔ Do you have semicolons at the end of each line of code?
➔ Did you spell the variable and function names correctly? Remember that JavaScript is case

sensitive!
➔ Are your functions in the correct location and sequence? Remember that order matters in

program flow!
➔ Do you have separate fill() functions above the ellipse() functions for both your meteor

and catcher?
➔ If your catcher doesn’t display, increase the alpha the value.
➔ Did you add mouseX and mouseY in the correct parameter location in your catcher ellipse?

Don’t forget to check your code with the Reference Guide on pg 3.

https://editor.p5js.org/GWCEducation/embed/1YrJR79bt

7

Step 4: Check for Understanding
Describe how this line of code would change the behavior of our catcher:

ellipse(200, 200, mouseX, mouseY);

Step 5: Conceptualize “catching” (2 mins)
In the last step, we figured out a way to have a player interact with our
game. Now we want to figure out how to have different components in the
game interact with each other. We want to determine when the catcher has
“caught” the meteor and when the meteor has “hit” the bottom of the
screen.

What actually happens when you catch something? Imagine throwing a ball
or rolling it across the floor to a friend. When it touches their body and they
contain it, we say they have caught the ball. We could also say that the ball
has collided or intersected with their hand or foot (or paw). Image Source: Pixabay

We want to write code that will test to see if the meteor and catcher have intersected. This is also known
as collision detection, a term for when two shapes touch. Here are some ways we might consider collision
detection in our program:

Let’s think about the information we have access to in our program that could help us: we know the x and y
position of the meteor, the x and y position of the catcher, and the size of each one. Even though their
positions are constantly changing, we can access those values through their x and y variables. Variables to
the rescue once again!

Don’t forget to check your code with the Reference Guide on pg 3.

https://pixabay.com/photos/animal-dog-catch-play-plate-2586116/

8

Step 6: Calculating distance (10-15 mins)
Meet the dist() function (3-5 mins)

We can use the information above to calculate how far the catcher is from the meteor at any given
moment. p5 has a function that does these calculations for us: the dist() function. This function
calculates the distance between two points. All we have to do is plug in the parameters! Here is the
syntax:

JAVASCRIPT DESCRIPTION

dist(x1, y1, x2, y2); ➔ dist: The function name.
➔ (): We use parentheses to tell our program that it needs to

call the function. Sometimes we include parameters or
inputs in the function inside our parentheses.

➔ x1: The x coordinate of the first point.
➔ y1: The y coordinate of the first point.
➔ x2: The x coordinate of the second point.
➔ y2: The y coordinate of the second point.
➔ ;: All lines of code in p5.js must end with a semicolon.

Think about it: What range of distance values do you think represent intersection?
Later on we will ask ourselves this question, when completing our project sketch to
write a conditional so we can track “catching.”

Inspect the demo sketch. The text displays the value returned from the dist() function between the
center circle and the mouse circle. Try moving the mouse circle around until it intersects with the center
circle and watch as the distance values change.

https://p5js.org/reference/#/p5/dist
https://editor.p5js.org/GWCEducation/embed/RLGFzYCDk
https://editor.p5js.org/GWCEducation/embed/RLGFzYCDk

9

Add dist() to your code (5-8 mins)

Let’s add the dist() function to our project sketch. First we will create a variable to store the value
returned from the function (i.e. the distance between the center of the catcher, and the center of the
meteor). Next we will add the function. Finally we will use a new function, the print() function, to track
the distance value as it changes.

❏ Add a new variable above setup() to store the distance value. We named our variable distance
but you can name it whatever you like. Just be sure you reference it correctly later in your code.
You do not need to assign it a value.

❏ Call the dist() function under the catcher code. If it’s helpful, you can add a short comment to
remind yourself what this line of code does.

❏ Set the parameters for x1 and y1 to the variables that store the x and y position of your meteor.

❏ Set the parameters for x2 and y2 to mouseX and mouseY.

❏ Store the results of the dist() function in your distance variable.

Don’t forget to check your code with the Reference Guide on pg 4.

Step 6: Calculating distance (cont.)

10

Step 6: Calculating distance (cont.)

Print the dist() value to the console (3-5 mins)

Now our program is constantly calculating the distance between the center of the meteor and the
center of the catcher! But how can we check those values? The easiest way to do this is the print()
function. It prints alphanumerical values, like words and numbers, to the console below the editor. Here
is the syntax:

JAVASCRIPT DESCRIPTION

print(‘Distance = ‘ +
distance);

➔ print: The function name that prints messages to the
console.

➔ (): We use parentheses to tell our program that it needs to
call the function. Sometimes we include parameters or
inputs in the function inside our parentheses.

➔ ‘’: Single or double quotes tell the program we are printing
strings or text. You can use either type of quote, just be
consistent.

➔ +: Joins elements to print them together.
➔ distance: Prints the current value stored in the distance

variable.
➔ ;: All lines of code in p5.js must end with a semicolon.

Let’s write this into our sketch:
❏ Add this line of code under the dist() function to print out the value of the distance variable:

print('Distance = ' + distance);

❏ Run the sketch.

The text Distance = and a series of changing values should print to the console.

11

Step 7: Determining intersection (5 mins)
Define intersection using the distance value (2-3 mins)

We know that we want our program to behave a certain way if a catcher and meteor intersect. To do
this, we need a numerical value that represents intersection. We can use the value stored in distance
(remember that you may have used a different variable name) to determine when the catcher and
meteor intersect.

After exploring the demo sketch, we can say that
intersection occurs if the distance is less than 15.
Now we can start making some decisions in our
program using conditionals.

Review conditionals (2 mins)

Now we can tell our sketch what to do if an intersection occurs. For this we need a conditional
statement. Let’s do a quick refresher: conditional statements allow us to control the flow of our
program. They use if statements to check if a condition is true or false. If a condition is true, then
the computer will run the code inside the if statement.

Below is an example to illustrate the syntax for a conditional statement in JavaScript (remember that
p5.js is a library for JavaScript). It tells our program to draw a circle in the top left corner of the canvas
if the x position of the mouse is greater than 100.

JAVASCRIPT DESCRIPTION

if(mouseX > 100){
 ellipse(0,0,50,50);
}

➔ if: Keyword to tell the program this is a conditional.
➔ (): We use parentheses to tell our program that anything

inside is part of the condition it will evaluate.
➔ mouseX > 100: The conditional expression that the sketch

will test to determine if it is true or false. You can use
comparison operators like > (greater than) or <= (less than
or equal to) or logical operators such as || (or) or && (and)
to set up your statement.

➔ {}: Curly brackets tell our program which lines of code to
run if the condition is true.

➔ ellipse(0,0,50,50): The statement that will execute if
the condition evaluates as true. You can also include other
if statements here.

➔ ;: All lines of code in p5.js must end with a semicolon.

Consider the distance demo sketch from earlier again:
What value is distance equal to when the catcher
covers or mostly covers the “meteor”?

https://editor.p5js.org/GWCEducation/embed/RLGFzYCDk
https://editor.p5js.org/GWCEducation/embed/RLGFzYCDk
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators
https://p5js.org/examples/control-logical-operators.html
https://editor.p5js.org/GWCEducation/embed/RLGFzYCDk

12

Don’t forget to check your code with the Reference Guide on pg 5.

Plan the catcher conditional (2-4 mins)

The first conditional we create will be for the catcher. We need to write an
if statement that will test to see if the meteor and catcher intersect. Before
writing any code, let’s describe what we want to happen. Play the game
again, then write pseudocode for the conditional. Try to be as specific as
possible. You can use the pseudocode you wrote in the Planning section of
Part 1 to get started. Check out the example sketch before getting started.

Step 8: Set up catcher conditional (5-10 mins)

Hint: You can use the variables for distance and the y position of the
meteor that you created in prior steps. You will also need a number
that represents intersection.

Add the catcher conditional (3-5 mins)

Next, translate your pseudocode to actual code:
❏ Add an if statement that checks the value of the distance variable.

❏ Add a line of code that updates the y position of your meteor. Make sure it is inside the curly
brackets of the conditional!

❏ Run your code.

❏ Try to make your meteor and catcher intersect. When they intersect, the current meteor should
disappear and a “new” meteor should appear at the top of the screen.

If this does not happen, check the distance values printing to the console. When the catcher and
meteor intersect, are the values in the range specified in the conditional statement? If not, you might
need to adjust the number in your expression.

Don’t forget to check your code with the Reference Guide on pg 5.

The print() function is very helpful for debugging! If at any point you are unsure of the
value of a variable in your sketch, put a print() statement under it to double check.

https://editor.p5js.org/GWCEducation/embed/G_uqmSHAy

13

Step 9: Set up screen bottom conditional (5-10 mins)

Plan the screen bottom conditional (2-3 mins)

Now let’s write the conditional to test if the meteor has intersected with
the bottom of the screen. If it has intersected with the bottom of the
canvas, we want the program to redraw it to the top of the canvas. If you
want a quick way to reference the height or width of the canvas in your
code, you can use the keywords height and width in place of the
numerical value. Check out the example sketch before getting started.

Remember: the height of our canvas is 400 pixels.

Write pseudocode for this conditional. Just as before, try to be as specific as possible. You can use the
pseudocode you wrote in the previous step or the Planning section of Part 1 to get started.

Don’t forget to check your code with the Reference Guide on pg 5.

Add the screen bottom conditional (3-5 mins)

Now let’s translate your pseudocode to actual code:
❏ Write the if statement and conditional expression.

❏ Add the statement that will run if the conditional is true. Make sure it is inside the curly brackets
of the conditional.

❏ Run your code.

❏ Wait for the meteor to intersect with the bottom of your canvas. When they intersect, the current
meteor should disappear and a “new” meteor should appear at the top of the screen.

https://editor.p5js.org/GWCEducation/embed/G_uqmSHAy

14

Step 10: Test your code (5-10 mins)
Let’s test what we have written so far to make sure our program runs the way we want it to. Click the
play button to run your sketch. It should:

➔ Print the distance value to the console.
➔ Redraw the meteor to the top of the canvas when the catcher and meteor intersect.
➔ Redraw the meteor to the top of the canvas when the meteor and bottom of the canvas

intersect.

Not working the way you want it to? Try these debugging tips:
➔ Is your code inside the correct curly brackets?
➔ Do you have semicolons at the end of each line of code?
➔ Did you spell the variable and function names correctly?
➔ Are your functions in the correct location and sequence? Remember that order matters in

program flow!
➔ Are the parameters in your dist() function correct?
➔ Print values to the console using print() then check any if statements.

Click here to run the
example sketch.

Don’t forget to check your code with the Reference Guide on pg 6.

https://editor.p5js.org/GWCEducation/embed/G_uqmSHAy

15

Step 11: Check for Understanding
Let’s say you want to “catch” the meteor when the catcher barely touches the outer edge of the meteor.
Would you increase or decrease the value in the expression of your first conditional statement?

Step 12: Share Your Girls Who Code at Home Project! (5 mins)

We would love to see your work and we know others would as well. Share your game with us! Don’t forget
to tag @girlswhocode #codefromhome and we might even feature you on our account!

Stay tuned for more Girls Who Code at Home projects!

Don’t forget to check your ideas with the Reference Guide on pg 7.

Project Link

Follow these steps to share your project:

➔ Save your project first.

➔ In the File Menu, choose the Share option in the
dropdown menu.

➔ Choose the Link option in the dropdown menu.

➔ Copy the Present Link paste it wherever you
would like to share it.

