
Girls Who Code At Home
Meteor Catcher Game: Part 3

Make the Meteor Fall

2

Activity Overview
At the end of Part 2, you used the coordinate system to draw
the first component of your game - the meteor! Then you set
the color of your meteor and sketch background. In this part,
you will learn how to create and use variables in p5.js to
move the meteor across the screen at a specified speed. We
will combine variables and arithmetic operators like + and =
to simulate motion. Yes, it is magical, but really it’s just
simple math! Click here to preview what you will learn by the
end of the activity.

PART 5
Add a

Randomizer

Add
randomness to

make your
game more
challenging

and fun!

PART 2
Draw the
Meteor

Build a basic
shape to

represent your
meteor, update

the style,
location, size,
and color of
your meteor.

PART 3
Make the
Meteor
Fall

Simulate
motion for your
meteor using

variables

PART 4
Catch the
Meteor

Build a catcher
that follows

your mouse to
catch the

falling meteors.

PART 1
Planning +
Intro to
p5.js

Identify the
parts of a

game and learn
about the
basics of

program flow in
p5.js

Materials
➔ p5.js Online Editor
➔ Meteor Catcher Game Sample Project
➔ Meteor Catcher Game Part 3 Reference

Guide

Learning Goals
By the end of this activity you will be able to...

❏ describe how to simulate basic motion in a
program.

❏ program different behaviors into elements
using variables and arithmetic operators.

Note: We included a replay button so you
can reset the meteor's behavior. If we did
not include this, you would see only a black
box once the meteor fell off the bottom of
the screen. We will fix this in the next
activity, Part 4, with a conditional.

You should have already completed Part 1 and Part 2
of the Meteor Catcher Game Series before embarking

on this activity.

You can also follow along with Part 3 in the
Meteor Catcher Game video tutorials!

https://editor.p5js.org/GWCEducation/embed/78K6wuXzC
https://editor.p5js.org/
https://editor.p5js.org/GWCEducation/present/NFjNmEEqP
https://drive.google.com/file/d/1Il3lrNOhAoEzPg-xU0EjDyVnJULciBs9/view?usp=sharing
https://drive.google.com/file/d/1Il3lrNOhAoEzPg-xU0EjDyVnJULciBs9/view?usp=sharing
https://editor.p5js.org/GWCEducation/embed/78K6wuXzC
https://girlswhocode.com/assets/downloads/craft-prod/downloads/Girls-Who-Code-At-Home-Meteor-Catcher-Part-1.pdf
https://girlswhocode.com/assets/downloads/craft-prod/downloads/Girls-Who-Code-At-Home-Meteor-Catcher-Part-2-1.pdf
https://www.youtube.com/playlist?list=PLxuXeImzB_r0WKEWpWFPDVI0p3zx9BKQm

3

Women in Tech Spotlight: Robin Hunicke

experimental games, including Luna and Woorld. Despite the small margins on the production of
Virtual Reality (VR) games, Robin believes it is important to develop games that take risk and pushes
her creativity. In 2008, Robin was named Gamasutra’s Top 20 Women Working in the Video Game
Industry and in 2009 she was awarded Microsoft’s Gaming Award for Design.

Robin is a large advocate for diversity in the gaming industry. Her work mainly revolves in amplifying
the work and voices of underrepresented groups. Much of her work as a professor at UC Santa Cruz
offers students a program that combines both art and programming courses for game design.

Watch this video to learn more about Robin and how she works to be a positive force in the game
industry. Learn more about Robin by reading her short faculty bio and reading about her AR game
Woorld, exploring the game Journey, or her other projects.

Reflect
Being a computer scientist is more than just being great at coding. Take some time to reflect on how
Robin and her work relates to the strengths that great computer scientists focus on building -
bravery, resilience, creativity, and purpose.

Share your responses with a family member or friend. Encourage others to read more about Robin
to join in the discussion!

Robin is a video game designer that teaches at UC Santa Cruz and is the
co-founder of Funomena. Robin began her career at Electronic Arts as a
Lead Designer, where she designed MySims. She then worked with
thatgamecompany, an independent game company, where she was one of
two women on the team to produce the game Journey. Journey won
several Game of the Year awards and was even nominated for the 2013
Grammy Awards for Best Score Soundtrack for Visual Media.

With her team at Funomena, Robin began to create video games utilizing
all different platforms including virtual reality goggles. Her team has made

Image Source: UCSC DAMN

CREATIVITY

How does Robin approach games in a different way than expected? What are
the advantages of approaching a project in an unexpected way?

https://youtu.be/LEfFylTqigI
https://danm.ucsc.edu/faculty/robin-hunicke
https://play.google.com/store/apps/details?id=com.Funomena.TangoWoorld&hl=en_US
https://thatgamecompany.com/journey/
https://thatgamecompany.com/journey/
http://www.funomena.com/aboutfunomena
https://danm.ucsc.edu/faculty/robin-hunicke

4

Step 1: Using variables in p5.js (5-10 mins)
Review variables in JavaScript (3-5 mins)

Before we dive in, let’s do a quick review on variables. Variables are containers that are used to store
information (data) in a computer program. They are particularly powerful because we can easily change
the value of a variable over the course of our program.

To create a variable, we need to declare it first. This tells the program that we want to create a container
and name it. In JavaScript, we declare a variable like this: let meteorDiameter;. We can declare it and
initialize it (or assign it a value) at the same time like this: let meteorDiameter = 50;. Let’s break
down the syntax:

JAVASCRIPT DESCRIPTION

let meteorDiameter = 50; ➔ let: Keyword that tells the sketch to create a variable.
➔ meteorDiameter: The name of our variable. This name can

be anything you like, but be sure to make it descriptive! It
can only be one word, so we use camelCase.

➔ =: Assigns the value to the variable. This is also called
initializing.

➔ 50: The value currently stored in the variable. You can store
any type of data in a variable: numbers, letters, strings, etc.

➔ ;: All lines of code in p5.js must end with a semicolon.

Programmers typically create and define all of the variables that they will need at the top. These are
called global variables. This means you can use those variables anywhere in your code. It also makes
your code more readable for both the programmer and anyone else reviewing their code. If you need
more of a refresher on variables, check out this video from the Coding Train.

Add variables (3-5 mins)

Right now, our ellipse does not contain any variables. If we want to simulate motion, we have to swap
out these static values for variables so we can change the value of the x and y position over time. We
need to declare and initialize variables for each parameter in our ellipse: x, y, and the width and height.

Naming your variables. You can use the variable names we use or create your own.
If you use your own, remember to reference them correctly later on

https://en.wikipedia.org/wiki/Camel_case
https://www.youtube.com/watch?v=Bn_B3T_Vbxs

5

Don’t forget to check your code with the Reference Guide on pg 2.

Step 1: Using variables in p5.js (cont.)

Add the following variables above the setup() function:
❏ Create a variable to store the x position and assign it a value of 200. We named this variable

meteorX, but you can create your own variable name.

❏ Create a variable to store the y position and assign it a value of 0. We named this variable
meteorY, but you can create your own variable name.

❏ Create a variable to store the width and height and assign it a value of 20. These values will be
the same since it is a circle. We named this variable meteorDiameter, but you can create your
own variable name.

Now that we have the variables, let’s use them! In the ellipse() function, replace the numerical
values with the corresponding variable we just created for the following parameters:
❏ x position
❏ y position
❏ width and height

Don’t forget to check your ideas with the Reference Guide on pg 2.

Step 2: Make observations about motion (5-10 mins)
Our goal in this part is to make the meteor fall from the top of the screen to the bottom of the screen.
But how do we translate that into code? Let’s consider an example to help us figure it out.

Examine this sketch below of a circle moving from left to right. Take 60 to 90 seconds to make
observations about the behavior of the circle. Think about the following questions:

➔ What axis is the circle moving on?
➔ How is the position of the circle changing? What value in ellipse() would have to change to

make this happen?
➔ Do you think the code to make this happen is in setup() or draw()?

Use your observations to write a line of pseudocode to tell the program how to move the ball. Do not move
onto the next part until you are finished.

https://editor.p5js.org/GWCEducation/embed/iAy8ido8d
https://editor.p5js.org/GWCEducation/embed/iAy8ido8d

6

Step 2: Make observations about motion (cont.)

Writing Motion as Code

In order to mimic horizontal motion, we want the value of x to change each time the program loops.
Remember - the program works on a loop. The program runs every line of code in draw() in sequence.
Once it reaches the end of the program, it goes back to the top and starts all over again. It does this
forever until you tell it to stop. We can write motion as a line of code by setting the x value equal to
itself plus a number:

Step 3: Add motion to your meteor (5-10 mins)

ellipse(xPosition, yPosition, 50, 50);
xPosition = xPosition + 1; // Can also be written as xPosition++

This means that the value of x will increase by that number every time the program loops. This number
determines how slowly or quickly the meteor moves across the screen. In other words, it sets the
speed. In the example sketch below, we set the speed to 1 so the x position increases by 1 with each
loop:

Our example circle moved horizontally, but we want the
meteor to move vertically down the y axis as shown in the
sketch below. This means we need to increase the y position
instead of the x position. Click this link to preview an example
sketch.

Follow these steps to make your meteor fall:
❏ Create a new variable above setup() to store the

speed. We named our variable speed but you can
name it whatever you like. Just be sure you reference
it correctly later in your code.

❏ Assign it a value that will make the meteor fall slowly.
Hint: You can use decimals!

❏ In the draw() function, add a line of code that
changes the y position of your meteor to make it fall
from the top of the screen to the bottom of the screen.

Don’t forget to check your code with the Reference Guide on pg 3.

This meteor is programmed to reset,
but your sketch will not do this until
Part 5.

https://editor.p5js.org/GWCEducation/embed/QJsU3NtHV
https://editor.p5js.org/GWCEducation/embed/QJsU3NtHV
https://editor.p5js.org/GWCEducation/embed/78K6wuXzC
https://editor.p5js.org/GWCEducation/embed/78K6wuXzC
https://editor.p5js.org/GWCEducation/embed/78K6wuXzC

7

Step 4: Test Your Code (5 mins)
Let’s test what we have written so far to make sure our program runs the way we want it to. Click the
play button to run your sketch. You should have:

➔ A meteor that falls at a slow rate from the top of the screen to the bottom of the screen.
➔ It should disappear at the bottom.
➔ You should not have a Replay button.

We included a replay button so
you can reset the meteor's
behavior. If we did not include
this, you would see only a black
box once the meteor fell off the
bottom of the screen. We will fix
this in the next activity, Part 4,
with a conditional.

Example

Not working the way you want it to? Try these debugging tips:

➔ Is your code inside the correct curly brackets?
➔ Do you have semicolons at the end of each line of code?
➔ Did you spell the variable and function names correctly?
➔ Are your functions in the correct location and sequence? Remember that order matters in

program flow!
➔ Is your arithmetic operator in the correct place?
➔ Is the value of your speed variable too fast (high value) or too slow (low value)?
➔ Is your meteor falling from the top to the bottom? Did you update the y position variable of your

meteor?

If you need a refresher on best practices for debugging,
check out this fantastic post from the p5.js community.

https://editor.p5js.org/GWCEducation/embed/78K6wuXzC
https://p5js.org/learn/debugging.html

8

Step 5: Check for Understanding
How would you change the speed equation to make the meteor move from the bottom of the screen to
the top?

Step 6: Share Your Girls Who Code at Home Project! (5 mins)

We would love to see your work and we know others would as well. Share your game with us! Don’t forget
to tag @girlswhocode #codefromhome and we might even feature you on our account!

Stay tuned for more Girls Who Code at Home projects!

Don’t forget to check your ideas with the Reference Guide on pg 3.

Project Link

Follow these steps to share your project:

➔ Save your project first.

➔ In the File Menu, choose the Share option in the
dropdown menu.

➔ Choose the Link option in the dropdown menu.

➔ Copy the Present Link paste it wherever you
would like to share it.

