
Girls Who Code At Home
Digital Art Rules

Part 2



Are you an artist or designer who is interested in exploring code? Or maybe you have some experience 
with code and want to explore creative processes. Or perhaps you want to explore both! Either way, this 
project is for you! Over two activities, we will learn the basics of p5.js, a JavaScript library made for 
beginners and creative coders, by creating a piece of digital art. 

Part 1 is all about planning, brainstorming, and paper prototyping. We will work on developing a set of 
rules to guide your artwork, then draw it on a grid. Part 2 is focused on introducing you to the basics of 
p5.js so you can translate your analog drawing to a digital sketch. Along the way, you will practice using 
the design process and get to know a range of Black and African American women and 
female-identifying designers and artists.

2

Materials
➔ p5.js Online Editor
➔ Your drawing from Part 1
➔ Your instructions from Part 1
➔ p5.js Reference
➔ Digital Art Rules Part 2 Reference 

Guide

Learning Goals
By the end of this activity you will be able to...

❏ describe the p5.js coordinate system and its 
relationship to pixels on the screen.

❏ use built in functions and commands to draw 
basic shapes on the coordinate plane.

❏ translate your physical drawing to a digital 
environment using code.

Prior Knowledge
➔ You should have completed Digital Art Rules Part 1 before beginning this activity. 

➔ It is still possible to complete Part 2 using an example image and the Reference Guide. We have 
included key concepts you will need to cover or review from Part 1. 

https://p5js.org/
https://editor.p5js.org/
https://p5js.org/reference/
https://drive.google.com/file/d/1LmTOAMV4jpRMuF9C9lprSIE0sBtsODdq/view?usp=sharing
https://drive.google.com/file/d/1LmTOAMV4jpRMuF9C9lprSIE0sBtsODdq/view?usp=sharing
https://girlswhocode.com/assets/downloads/craft-prod/downloads/Girls-Who-Code-At-Home-Digital-Art-Rules-Part-1.pdf


3

Kelechi Anyadiegwu

Reflect
Being a computer scientist is more than just being great at coding. Take some time to reflect on how 
Kelechi and her work relates to the strengths that great computer scientists focus on building - bravery, 
resilience, creativity, and purpose.

Share your responses with a family member or friend.  Encourage others to read more about 
Kelechi to join in the discussion! 

After graduating from college, Kelechi returned home to pursue her dream of becoming an entrepreneur. 
Currently based in Atlanta, Kelechi runs Zuvaa as its founder and CEO.

Watch this video about Kelechi’s journey to learn more about her pathway to becoming a fashion tech 
entrepreneur, and her vision for African fashion in the United States of America!

PURPOSE

There were many African clothing retailers when Zuvaa entered the market. 
Despite the competition, what made Kelechi stick with her company?

In the Shona language of Zimbabwe, "Zuvaa" 
translates to sunshine. When Kelechi first heard it, 
she immediately knew that it would be perfect for 
her company because it represented her brand's 
positivity, pride, and the inner light that shines in 
African fashion. Founded in 2013, Zuvaa curates 
designs from over 80 vendors and operates as a 
pop-up shop and online retailer for African prints 
and designs. Since its founding, Zuvaa has 
become a dominating force in the fashion 
industry.

Source: African Business Central

https://youtu.be/Ug6PcGNPI5g
http://www.africanbusinesscentral.com/2017/01/07/how-one-26-year-old-turned-500-into-2-million-online-photos/


4

Step 1: Meet p5.js! (10-15 mins)
We have now reached the digital portion of our journey! In this step, you’ll meet p5.js and create an 
account.

P5.js (or just p5) allows you to create interactive art 
for web browsers. It is a tool for creative coding - 
projects that use code for expression instead of just 
functionality. P5.js is a library for JavaScript, a 
programming language that allows you to add 
interactivity on the web. Being a library means that p5 
is JavaScript, but the creators made a collection (or 
library) of specialized functions/methods so you don’t 
have to do everything from scratch. Since it is 
web-based, you can easily share all of your work! You 
can read more about the origins and community on 
the p5 homepage. Check out the Showcase page to 
see some example projects people have made with it.

The “p” in p5.js stands for Processing. Processing is a programming language built for artists and 
designers to integrate code into their projects.  Processing was designed for beginners to easily create a 
range of interactive media from animations to data visualizations to musical instruments to games to 
large scale installations. Visit the Processing Foundation homepage to learn more about it.

Create Your Account (3-5 mins)

There are two ways you can use p5.js: the online web editor or a text editor and copy of 
p5.js that you download to your local computer. The easiest way to get started with p5 is 
the online editor. This allows you to write code and run your program in a web browser. In 
this tutorial, we are only going to use the web editor to reference steps and illustrate 
examples.

To get started with the web editor, you need to create an account.
❏ Go to https://editor.p5js.org/signup.
❏ Sign Up. Fill in all the fields (username, email, password, and password confirmation) then click 

“Sign up” or you can choose to sign in with Google or GitHub.
❏ Confirm your Email. You will receive an email to confirm and verify your account (check Spam if 

it doesn’t show up in 3-5 minutes). Click the link, then sign in with your shiny new credentials 
(i.e. username and password).

❏ Save your credentials in a safe place so you can log in again. If you do forget your password, 
go to the Log In page and click “Reset Your Password” at the bottom.

Screenshot of the p5.js Web Editor

https://p5js.org/
https://p5js.org/showcase/
https://processingfoundation.org/
https://editor.p5js.org/signup
https://hq.girlswhocode.com/gwc/testbed-test-collection/proj-meteor-catcher-game/%E2%80%9Dhttps://editor.p5js.org/login%E2%80%9D


5

Explore the environment (5-8 mins)

Now that you have an account, let’s examine the interface of the p5 online editor. This is an IDE 
or integrated development environment that allows you to write and run programs in one place. 
The programs written in p5.js are called sketches. You can think of this environment like a 
sketchbook that already has your tools at your fingertips!

➔ Tool Bar: At the top of the page is the toolbar.
◆ In the File menu, you can create a sketch, save a sketch, duplicate a sketch, share a sketch 

in multiple formats, download sketch files, open a sketch, and open examples. Note: Some 
of these options will not show up until you save your sketch.

◆ The Edit drop drop down allows you to tidy your code, find a character or word in your 
sketch, and navigate through them.

◆ In the Sketch menu, you can add files or folders to your code and run or stop your sketch.
◆ You can find always helpful keyboard shortcuts, a link to the p5 reference page, and more 

about p5 in the Help menu.

Check out some of the keyboard shortcuts on p5.js here. 

If your internet connection is intermittent or you would rather work in an editor locally, you 
can explore the second option. See this Getting Started page for the materials you will need 
and instructions on how to download the library. If you need more support, don’t be afraid to 
Google!

If working offline, the examples might look different, but the outcome will be the same.

https://p5js.org/learn/p5-screen-reader.html
https://hq.girlswhocode.com/gwc/testbed-test-collection/proj-meteor-catcher-game/%E2%80%9Dhttps://p5js.org/get-started/#settingUp%E2%80%9D


6

➔ Sketch Information: Below the toolbar is a play button and a stop button. The play button starts 
running the program. The stop button stops the program. You can check the ‘Auto-refresh’ box if 
you want the program to keep running after you make changes instead of having to click the 
play button again.

To the right, you will see a pre-populated title 
for your sketch. To rename your sketch, click 
the pencil icon and type in the new title.

➔ Settings: You can access the settings by clicking the gear icon to the left of the Sketch 
Information. Here you can change the theme, text size, and accessibility settings (we will talk 
more about accessibility in a bit). We highly recommend you turn autosave on in the General 
settings.

➔ Editor: The editor is where you write your code. Each line has a number so you can easily 
reference it. The small arrows next to a number mean that you can click it to collapse the text. 
For example, if you don’t need to see multi-line comments, you can collapse those.

➔ Preview: This window displays the results of your code when you run the program.

➔ Console: Below the editor is the console. This window prints information about your program, 
such as error messages or data that you want access to in a program, like the value of a 
variable.

Accessibility in p5.js (2 mins)

p5 developers have placed a high priority on making the editor accessible to those 
who are visually impaired. These tools are in active development and are part of a 
larger ongoing research project hosted at NYU.The online editor website and editor 
itself are readable by screen readers. Much of the accessibility development has 
been toward making the visual output in the preview window readable by a screen 
reader. For more information about using this functionality see this page on the p5 
website.

As you continue learning how to program across different languages and platforms, you should always 
keep accessibility and inclusivity at the forefront. Historically, designers, engineers, and programmers did 
not prioritize people with disabilities as they created software and hardware. With the rise of facial 
recognition and other software, this also applies to people of color, women, and other marginalized 
communities since the implicit biases of programmers can translate into their code. This is beginning to 
change as awareness increases, but there is still much work to be done. Take the time to ensure everyone 
can use what you build!

https://p5js.org/learn/p5-screen-reader.html
https://p5js.org/learn/p5-screen-reader.html


7

Step 2: Create your project sketch (5-10 mins)
In the remaining sections, we will start writing the code for your game. First we need to create your 
main project sketch.

❏ Log into the p5.js online editor. The editor 
automatically gives you a blank sketch with 
starter code. Alternatively, you can create a 
new sketch by going to File > New.

❏ Click the pencil icon to name the sketch to 
something that you can easily recognize 
like Meteor Catcher Game v1. Note: This is 
in the sketch information area below the 
toolbar.

❏ Next, go to File and click Save. You can also save by using the keyboard shortcut Command S 
(Mac) or Control S (Windows). Be sure to navigate inside the editor before using these 
shortcuts.

❏ Create a multiline comment at the very top of your sketch with the following information:
❏ Title of program: This should be the same as the sketch name.
❏ Version of program: Is this the first version or second? If you make big changes, it’s 

good practice to create a new version.
❏ Author: By (your first name and last name initial).
❏ Description: A sentence or two about what it does.

At the top of your sketch, you will include a comment that gives basic information about the 
sketch. Use code comments to remind yourself of how something works, the reasoning for a 
decision, or a follow up task. 

➔ Single line comments use a double forward slash, //. 

➔ Multiline comments use a forward slash and asterisk, /*, to open it and an asterisk and 
forward slash, */, to close it.

// This is a single line comment

/*
This is a
multiline comment
*/



8

Step 3: Write your first function (8-12 mins)
A program is a set of instructions you create for a computer to follow. Instead of writing the same 
instructions over and over, we can group instructions into chunks so we can reuse them later. These 
chunks are called functions. Functions are lines of code that perform a set of actions. You can think of 
them like verbs - they do something. In p5, we give instructions to our program in the form of functions. 
Most of the functions you will use are defined in the p5.js library (you can also create your own 
functions, but we will not cover how to do this in the current tutorial). When we call or use the function, 
the program runs the code inside it. 

Set your canvas size (5-7 mins)
For example, one of the most important functions is the createCanvas() function. This function 
creates the canvas element that draws the graphics and displays the sketch. In other words, it 
determines the screen size. But how do we tell the function what size screen we want? To do this, we 
pass parameters through the function to get the output we want. Parameters are input values that the 
function uses to execute the function. Let’s examine the syntax of the createCanvas() function:

FUNCTION DESCRIPTION

createCanvas(width, height);

➔ createCanvas: The function name. To learn 
more, see the createCanvas() entry in the p5.js 
Reference

➔ (): We use parentheses to tell our program that it 
needs to call the function. Sometimes we include 
parameters or inputs in the function inside our 
parentheses.

➔ width: The first parameter that sets the width of 
the canvas in pixels.

➔ height: The second parameter that sets the 
height of the canvas in pixels.

➔ ;: All lines of code in JavaScript must end with a 
semicolon.

https://p5js.org/reference/#/p5/createCanvas
https://p5js.org/reference/#/p5/createCanvas


9

The parameters set the dimensions of the canvas in pixels. Pixels are the graphic building blocks of 
digital screens. Each pixel represents a single point on the screen and has a single color. You will need to 
include this function in every p5 sketch.

If this sounds a lot like the coordinate plane or grid we created in Part 1, your intuitions are correct! The 
top of the canvas is our x-axis and the left side is our y-axis.

We need to change the parameter values to resize the canvas based on the size of your digital artwork. 
Use the drawing you created in Part 1 or the example for reference.

❏ Open the p5 web editor and login. You may have noticed that the sketch came prepopulated with 
starter code, including our friend createCanvas(). The default size of the canvas is 400 pixels 
wide and 400 pixels high.

❏ Click the play button to run the code. Notice the size of the canvas.

❏ Try changing one or both values, then click the play button to run the code again. Check the 
auto-refresh box so you don’t have to hit the play button after each change you make.

Voila! A gray box the size of your parameters 
should appear In the preview window. Gray 
isn’t that much fun though. Let’s use this 
newfound function-al knowledge to change 
the background color to the one you picked.

If you need a refresher on the coordinate system, see the Reference Guide pg 2.



Set your background color (2-5 mins)
The background() function sets the color used for the background of the p5.js canvas. It can take many 
different color value parameters including RGB and hex values. 

10

FUNCTION DESCRIPTION

background(redValue, 
greenValue, blueValue);

➔ background: The function name. To learn more, see the 
background() entry in the p5.js Reference

➔ (): We use parentheses to tell our program that it needs to 
call the function. Sometimes we include parameters or 
inputs in the function inside our parentheses.

➔ redValue: The red value between 0 and 255.
➔ greenValue: The green value between 0 and 255.
➔ blueValue:The blue value between 0 and 255.
➔ ;: All lines of code in JavaScript must end with a 

semicolon.

We’ll be using RGB color mode. It uses combinations of red, green, and blue light to create a range of 
digital colors. You can assign a value to each color value - red, green, and blue - between 0 to 255. For 
example, (255, 0, 0) would be red, (0, 0, 0) would be black, (78, 205, 196) would be teal, and (255, 255, 
255) would be white. 

= (255,0,0) = (0,0,0) = (78,205,196) = (255,255,255)

Use the background() function to add color to your canvas:

❏ Check your drawing or instructions from Part 1 to remember the background color you chose. 

❏ Find the RGB values for the color. You can use a tool like color pickers or Coolors if you need 
help determining the values.

❏ Call the background() function inside draw() and add the RGB values (remember that 
location is important!).

Step 4: Learn about program flow (5-10 mins)
In the last step, we learned about two functions, 
but we put them in two different locations: function setup() {

  createCanvas(400, 300);
}

function draw() {
  background(13, 156, 144);
}

https://p5js.org/reference/#/p5/background
https://p5js.org/reference/#/p5/background
https://htmlcolorcodes.com/color-picker/
https://coolors.co/


We know how to give our program instructions, but how do we know where to put those instructions? 
When do they run? Does the order of those instructions matter? Can functions go inside other 
functions? All of these questions relate to program flow. This refers to the order in which the program 
runs your lines of code. 

11

Step 4: Learn about program flow (cont.)

In p5.js, the program runs each line of code in 
sequence. This means it runs the first line of code, 
then line 2, then line 3, etc. Think about baking 
your favorite dessert - like cookies. First you get 
out all the ingredients, then you measure them, 
mix them, put the dough on a cookie sheet, bake 
them, and eat them. These steps happen 
sequentially - you can’t perform these steps out of 
order. For example, you can’t eat the cookies 
before you measure the ingredients.

There are two core functions in p5.js that determine when and how often your code runs: setup() and 
draw().

My Overly Simplified Cookie 
Recipe

1. Get out all the ingredients.
2. Measure the ingredients.
3. Mix them together.
4. Drop the dough on a cookie sheet
5. Bake the cookies.
6. Eat all of them. 

DEFINITION
What is it?

CONTENTS
What should I put inside it?

setup()

The setup() function runs only one time 
when your program starts. There is only one per 
sketch and it cannot be called again after the 
first time.

Any functions that you want to run immediately 
when the program starts, such as screen size 
with createCanvas(), background color 
(sometimes), and to load media such as images 
and fonts as the program starts. If you create any 
variables here, you cannot access them in  
draw() or other functions.

draw()

The draw() function runs the lines of code 
contained inside its block continuously until the 
program is stopped. It is the main loop and it is 
where the action happens. There is only one per 
sketch and it is called after the setup() 
function.

Anything that you want to happen repeatedly.



If you are only creating static or still sketches with no movement or interaction, then you can put all 
your code in setup(). But if you are animating a shape or want to listen for a mouse click, you will 
likely need to put most of your code in draw(). Since you will be using draw() a fair amount as you 
work more and more with p5.js, we will put most of our code there. 

12

Step 4: Learn about program flow (cont.)

Step 5: Practice translating an example image (12-15 mins)
The last batch of knowledge you need to create your digital artwork are the functions that will render your 
design elements: shape, line, color, and text.

rect();
rectMode();
ellipse();
triangle();

quad();

SHAPE

line();
strokeWeight();

noStroke();

LINE

background();
fill();

stroke();

COLOR

text();
textSize();
textAlign();

TEXT

In this step, you will practice using these functions by translating the example drawing on the left into 
the p5.js digital sketch on the right. We will pay special attention to the sequencing or order in which we 
write our functions.

Example Drawing P5.js digital sketch



13

Step 5: Practice translating an example image (cont.)

Planning (3-5 mins) 
Review the example drawing

Our drawing is on a grid with a width of 500 pixels and a height of 300 pixels. Each square on the grid 
represents 10 pixels. 

ELEMENT VALUES COLOR

Square Center = (250,140)   Width = 100   Height = 100 Light blue: R = 76, G = 201, B = 240

Circle Center = (390,140)   Width = 100   Height = 100 Dark blue: R = 67, G = 97, B = 238

Triangle
Point 1 = (110,90)  Point 2 = (160,190)   

Point 3 = (60,190)
Purple: R = 86, G = 11, B = 173

Line Point 1 = (110,140)  Point 2 = (390,140)   Light purple: R = 181, G = 23, B = 158

Text Text = “hello world!”   Center = (250,250) Light purple: R = 181, G = 23, B = 158

Review the example instructions

Read through the instruction set below to get a sense of the data you need to complete the drawing. 
We will remind you of the individual instructions as we program each shape.



Make a plan

Once you’ve reviewed them, let’s come up with a general plan for how we will program the sketch:

➔ Draw the shape or line in the desired location. Test your sketch.
➔ Make stylistic changes to the shapes and/or lines if necessary. Test.
➔ Fill the shape or line with the given color. Test..
➔ Repeat for the next shape or line.

Program the lines 
and shapes

➔ Draw the text to the screen in the desired location. Test your sketch.
➔ Make any stylistic changes to the text if necessary. Test.
➔ Change the color of the text. Test.

Program the text

Review the starter code

Finally, open this starter code sketch and make a copy. 
Rename it to something descriptive that you will 
remember. Our starter code only contains a few lines. In 
setup(), we set the canvas size to 500 pixels in width 
and 300 pixels in height. In draw(), we set the 
background color to a light gray by giving it a value of 240. 
We only need to use one value if the color is in grayscale 
with 0 being black and 255 being white.

14

Step 5: Practice translating an example image (cont.)

Program the square (5-7 mins)
Let’s draw the square first using the rect() function. This function allows you to draw a rectangle on 
the canvas (remember that a square is a rectangle!). 

// Only runs once
function setup() {
  createCanvas(500, 300);
} 

// Runs over and over in a loop
function draw() {
  // Set the background
  background(240); 
}

FUNCTION DESCRIPTION

rect(x, y, width, height);

➔ rect: The function name. To learn more, see the rect() 
entry in the p5.js Reference

➔ (): We use parentheses to tell our program that it needs to 
call the function. Sometimes we include parameters or 
inputs in the function inside our parentheses.

➔ x: The x-coordinate of the rectangle.
➔ y: The y-coordinate of the rectangle.
➔ width: Sets the width of the ellipse in pixels.
➔ height: Sets the height of the ellipse in pixels.
➔ ,: We use commas to separate the different parameters or 

inputs in the functions.
➔ ;: All lines of code in p5.js must end with a semicolon.

Starter Code Sketch

https://editor.p5js.org/GWCEducation/sketches/2lV540dnb
https://p5js.org/reference/#/p5/rect
https://p5js.org/reference/#/p5/rect
https://editor.p5js.org/GWCEducation/sketches/2lV540dnb


Use the instructions and the function reference table to 
add this line of code to your sketch:

❏ Add a square to your canvas using the rect() 
function. 

❏ Press play to test it. 

Instructions: Values

➔ Center = (250,140)   
➔ Width = 100   Height = 100

When you run your code, a white square with a black outline should display in the lower right: 

But it’s not in the right location! By default, p5.js sets the location coordinates in the upper left 
corner, not the center. We can use the rectMode() function to change how p5 interprets the 
location coordinates we give the rect() function. 

15

FUNCTION DESCRIPTION

rectMode(CENTER);

➔ rect: The function name. To learn more, see the 
rectMode() entry in the p5.js Reference.

➔ (): We use parentheses to tell our program that it needs 
to call the function. Sometimes we include parameters 
or inputs in the function inside our parentheses.

➔ CENTER: Interprets the first two parameters as the 
shape's center point. Note that this is in all caps and is 
case sensitive.

➔ ;: All lines of code in p5.js must end with a semicolon.

❏ Add the rectMode() function. Place it before the rect() function. Since our program 
reads sequentially, we need to tell p5 how to interpret the rect() parameters before we call 
or use the rect() function.

❏ Press the play button to test it. 

Step 5: Practice translating an example image (cont.)

https://p5js.org/reference/#/p5/rectMode


The center of your square should now be the same as 
the center of the canvas.

FUNCTION DESCRIPTION

fill(redValue, greenValue, 
blueValue);

➔ fill: The function name. To learn more, see the 
fill() entry in the p5.js Reference

➔ (): We use parentheses to tell our program that it 
needs to call the function. Sometimes we include 
parameters or inputs in the function inside our 
parentheses.

➔ redValue: The red value between 0 and 255.
➔ greenValue: The green value between 0 and 255.
➔ blueValue:The blue value between 0 and 255.
➔ ;: All lines of code in p5.js must end with a semicolon.

Use the instructions and the function reference table 
to add this line of code to your sketch:

❏ Add the fill() function before the rect() 
function. 

❏ Press the play button to test it.

Your square should turn a light blue color: 

Instructions: Color

➔ Light blue: R = 76, G = 201,       
B = 240

16

Step 5: Practice translating an example image (cont.)

Time to add color using the fill() function in RGB mode. Similar to the rectMode() function, the 
fill() function should come before our shape. We need to tell p5 the color we want to paint our 
shape before we draw it. You can think of it like an actual paint brush - we can’t paint anything until we 
add color to our brush!

Check your code in the Reference Guide on pg 3.

https://p5js.org/reference/#/p5/fill


Program the circle (2-3 mins)
One shape down! Now onto the circle. Our star function here is the ellipse() function. It allows you 
to draw an ellipse - a fancy word for oval - on the canvas. 

FUNCTION DESCRIPTION

ellipse(x, y, width, height);

➔ ellipse: The function name. Ellipse is another word 
for oval. To learn more, see the ellipse() entry in the 
p5.js Reference 

➔ (): We use parentheses to tell our program that it 
needs to call the function. Sometimes we include 
parameters or inputs in the function inside our 
parentheses.

➔ x: The x-coordinate at the center of the ellipse.
➔ y: The y-coordinate at the center of the ellipse.
➔ width: Sets the width of the ellipse in pixels.
➔ height: Sets the height of the ellipse in pixels.
➔ ,: We use commas to separate the different 

parameters or inputs in the functions.
➔ ;: All lines of code in p5.js must end with a semicolon.

Use the instructions below and the function reference 
table to add these lines of code to your sketch:

❏ Draw the circle in the correct location. 
❏ Add color using the fill() function. Remember 

that the order of your code matters!
❏ Press the play button to test it. 

Your circle should be to the right of the square and have 
a dark blue color: 

Instructions: Values

➔ Center = (390,140)   
➔ Width = 100   Height = 100

Instructions: Color

➔ Dark blue: R = 67, G = 97, B = 
238

17

Step 5: Practice translating an example image (cont.)

Check your code in the Reference Guide on pg 4.

https://p5js.org/reference/#/p5/ellipse
https://p5js.org/reference/#/p5/ellipse


Program the triangle (2-3 mins)
We can use the triangle() function to draw our last shape to the canvas. 

FUNCTION DESCRIPTION

triangle(x1, y1, x2, y2, x3, y3);

➔ triangle: The function name. To learn more, see the 
triangle() entry in the p5.js Reference

➔ (): We use parentheses to tell our program that it 
needs to call the function. Sometimes we include 
parameters or inputs in the function inside our 
parentheses.

➔ x1: The x-coordinate of the first point.
➔ y1: The y-coordinate of the first point.
➔ x2: The x-coordinate of the second point.
➔ y2: The y-coordinate of the second point.
➔ x3: The x-coordinate of the third point.
➔ y3: The y-coordinate of the third point.
➔ ,: We use commas to separate the different 

parameters or inputs in the functions.
➔ ;: All lines of code in p5.js must end with a semicolon.

Use the instructions below and the function reference 
table to add these lines of code to your sketch:

❏ Tell p5.js the color of the triangle using the 
fill() function. Remember that the order of 
your code matters!

❏ Draw the triangle in the correct location. 
❏ Press the play button to test it. 

Your triangle should be to the left of the square and have 
a purple color: 

Instructions: Values

➔ Point 1 = (110,90)  
➔ Point 2 = (160,190)   
➔ Point 3 = (60,190)

Instructions: Color

➔ Purple: R = 86, G = 11, B = 173

18

Step 5: Practice translating an example image (cont.)

Check your code in the Reference Guide on pg 4.

https://p5js.org/reference/#/p5/triangle


Program the line (5-7 mins)
Next, we’ll draw the line that goes through the middle of all three shapes using the line() function. 

FUNCTION DESCRIPTION

line(x1, y1,x2, y2);

➔ line: The function name. To learn more, see the 
line() entry in the p5.js Reference

➔ (): We use parentheses to tell our program that it 
needs to call the function. Sometimes we include 
parameters or inputs in the function inside our 
parentheses.

➔ x1: The x-coordinate of the first point.
➔ y1: The y-coordinate of the first point.
➔ x2: The x-coordinate of the second point.
➔ y2: The y-coordinate of the second point.
➔ ,: We use commas to separate the different 

parameters or inputs in the functions.
➔ ;: All lines of code in p5.js must end with a semicolon.

Use the instructions below and the function reference 
table to add this line of code to your sketch:

❏ Draw one line that touches all shapes. The line 
should not be visible on the front of the shapes. 
Remember that the order of your code matters!

❏ Press the play button to test it. 

Instructions: Values

➔ Point 1 = (110,140) 
➔ Point 2 = (390,140)  

19

Step 5: Practice translating an example image (cont.)

You should see a line from the triangle to the circle that only displays behind the shapes. If your line is 
in front of the shapes, try moving the line() before the shapes in your code.

https://p5js.org/reference/#/p5/line


From an aesthetic perspective, the thin black lines don’t really do much for the composition or visual 
arrangement of the image. Let’s change that. We can add color to our line with the stroke() function 
and change the thickness of our line using strokeWeight(). 

FUNCTION DESCRIPTION

stroke(redValue, greenValue, 
blueValue);

➔ stroke: The function name. To learn more, see the 
stroke() entry in the p5.js Reference

➔ (): We use parentheses to tell our program that it 
needs to call the function. Sometimes we include 
parameters or inputs in the function inside our 
parentheses.

➔ redValue: The red value between 0 and 255.
➔ greenValue: The green value between 0 and 255.
➔ blueValue:The blue value between 0 and 255.
➔ ;: All lines of code in p5.js must end with a semicolon.

strokeWeight(weight);

➔ strokeWeight: The function name. To learn more, 
see the strokeWeight() entry in the p5.js Reference

➔ (): We use parentheses to tell our program that it 
needs to call the function. Sometimes we include 
parameters or inputs in the function inside our 
parentheses.

➔ weight:The width of the stroke used for lines, points 
and the border around shapes. All widths are set in 
units of pixels.

➔ ;: All lines of code in p5.js must end with a semicolon.

Use the instructions and the function reference table to 
add these lines of code to your sketch:

❏ Change the line color. 
❏ Increase the thickness of the line. There is no 

parameter for the stroke weight in our 
instructions, so try changing the value until you 
find a thickness you like.

❏ Press the play button to test it. 

Instructions: Color

➔ Light purple: R = 181, G = 23,    
B = 158

20

Step 5: Practice translating an example image (cont.)

https://p5js.org/reference/#/p5/stroke
https://p5js.org/reference/#/p5/rectMode


21

Check your code in the Reference Guide on pg 5.

A thicker, light purple line should display on the canvas:

Step 5: Practice translating an example image (cont.)

Program the text (6-8 mins)
We have reached our final step - the text! There are a lot of things you can do with words and letters. 
Let’s start with the basics - drawing text to the screen with the text() function. 

JAVASCRIPT DESCRIPTION

text(string, x, y);

➔ text: The function name. To learn more, see the 
text() entry in the p5.js Reference

➔ (): We use parentheses to tell our program that it 
needs to call the function. Sometimes we include 
parameters or inputs in the function inside our 
parentheses.

➔ string: A string is a series of text characters that can 
be words, letters, or symbols. They must be 
surrounded by either single-quotation marks(') or 
double-quotation marks(").

➔ x: The x-coordinate of the text location.
➔ y: The y-coordinate of the text location.
➔ ,: We use commas to separate the different 

parameters or inputs in the functions.
➔ ;: All lines of code in p5.js must end with a semicolon.

Use the instructions below and the function reference 
table to add this line of code to your sketch:

❏ Add a message underneath the shapes in the 
center of the canvas.

❏ Press the play button to test it. 

Instructions: Values

➔ Text = “hello world!”   
➔ Center = (250,250)

https://p5js.org/reference/#/p5/text


22

Check your code in the Reference Guide on pg 6.

Your message should display as text on the canvas and appear something like this:

Step 5: Practice translating an example image (cont.)

We have text on the screen, but that definitely does not resemble the text on our drawing. It’s too small 
to read, off-center, has an outline, and is the wrong color. Let’s tackle the size and alignment first. The 
textSize() function sets the size in pixels and textAlign() sets the text alignment. 

FUNCTION DESCRIPTION

textSize(size);

➔ textSize: The function name. To learn more, see the 
textSize() entry in the p5.js Reference

➔ (): We use parentheses to tell our program that it 
needs to call the function. Sometimes we include 
parameters or inputs in the function inside our 
parentheses.

➔ size: The size of the letters in units of pixels
➔ ,: We use commas to separate the different 

parameters or inputs in the functions.
➔ ;: All lines of code in p5.js must end with a semicolon.

textAlign(horizontalAlign);

➔ textAlign: The function name. To learn more, see 
the textAlign() entry in the p5.js Reference

➔ (): We use parentheses to tell our program that it 
needs to call the function. Sometimes we include 
parameters or inputs in the function inside our 
parentheses.

➔ horizontalAlign: Set the horizontal alignment 
using LEFT, CENTER, or RIGHT. Note that these values 
are in all caps and case sensitive.

➔ ,: We use commas to separate the different 
parameters or inputs in the functions.

➔ ;: All lines of code in p5.js must end with a semicolon.

https://p5js.org/reference/#/p5/textSize
https://p5js.org/reference/#/p5/textAlign


23

Use the function reference tables to add these lines of code to your sketch:

❏ Set the size to 30.
❏ Align the text to center.
❏ Press the play button to test it. 

Your message should display in a larger size and be centered on the canvas: 

Step 5: Practice translating an example image (cont.)

Now let’s fix the outline and color. So far we have used functions to add elements to our screen, but 
there are also functions that remove elements. We can call the noStroke() function to disable all 
lines and outlines that come after it. 

Right now the text takes the same color as the last fill() function we called for the triangle. We 
need to add another fill() function before text() to set it’s color. Use the instructions and the 
function reference table to complete the following steps:

❏ Remove the outlines on the text.
❏ Change the color of the text.
❏ Press the play button to test it. 

Instructions: Color

➔ Light purple: R = 181, G = 23,    
B = 158

FUNCTION DESCRIPTION

noStroke();

➔ noStroke: The function name. To learn more, see the 
noStroke() entry in the p5.js Reference

➔ (): We use parentheses to tell our program that it 
needs to call the function. Sometimes we include 
parameters or inputs in the function inside our 
parentheses.

➔ ,: We use commas to separate the different 
parameters or inputs in the functions.

➔ ;: All lines of code in p5.js must end with a semicolon.

https://p5js.org/reference/#/p5/noStroke


24

Check your code in the Reference Guide on pg 7.

Your text should be a light purple with no outlines. If it displays differently from the image below, check 
the sequence of functions in your code.

Step 5: Practice translating an example image (cont.)

Program complete! In this step, you learned how to translate your coordinate plane drawing and written 
instructions to a digital image in p5.js. You learned how to use and apply shape, line, and color 
functions to program your sketch. In the next step, you will use this same process to translate your 
drawing from Part 1 to a piece of digital art!

Step 6: Translate your drawing to p5.js (15-25 mins)
We will implement the same process from the last step to program your drawing.

Make a plan (2-5 mins)
Gather your drawing and instructions to review. As you read through your instructions, think about what 
sequence you should use to program your elements. Remember: order matters. You can write any 
additional notes or comments to yourself if it’s helpful.

If you did not complete Part 1, you can use one of the samples in the Reference Guide on pg 8-11.

Write your program (10-20 mins)
Use your plan to program one element at a time. Just like we practiced in Step 6, you should write a 
line or two of code at a time, then press the play button to test your sketch. This will allow you to catch 
any mistakes early instead of having to sift through multiple lines of code to find your error. 

For a full list of the function reference tables, check the Reference Guide on pg 12-16.



25

Keep adding all of your shapes, colors, lines, and text until you’re finished. If you run into a problem, 
check out the Debugging Tips below. Debugging is the word programmers and engineers use for fixing 
technical problems.

Debugging Tips

Not working the way you want it to? If you have an error that prevents the code from compiling and 
running, p5.js will display an error message in the console. When something isn’t working properly, 
start there to figure out the problem.

Otherwise, try these debugging tips:

❏ Is your code inside the correct curly brackets?

❏ Do you have semicolons at the end of each line of code?

❏ Did you spell the variable and function names correctly? Remember that JavaScript is also 
case-sensitive!

❏ Are your functions in the correct location and sequence? Remember that order matters in 
program flow!

❏ Do you have single or double quotation marks around the text in the functions that require it, 
such as the text() function? 

❏ Are your parameter values within the correct range for the function? For example, is there an x 
value of 500 even though the canvas is 400 pixels wide? Are your RGB values between 0 and 
255?

To learn more about best practices for debugging, check out this post on debugging from the p5 
community.

Step 6: Translate your drawing to p5.js (cont.)

Step 7: Extensions (10-20 mins)
Extension 1: Add a new font (5-10 mins)
Right now, your text displays in a default sans serif font. You can change the font of your text in a few 
simple steps by embedding a link into your sketch’s HTML file.

WITHOUT GOOGLE FONT WITH GOOGLE FONT

https://p5js.org/learn/debugging.html
https://p5js.org/learn/debugging.html


26

❏ Choose a font from Google fonts. Click 
on the font you want to use. 

❏ Select the styles. You will notice that 
there are many different styles for each 
font. Click Select this style for the one 
you want to use. 

Step 7: Extensions (cont.)

❏ Copy the HTML embed link. In the top 
right corner, you will notice a button 
with three squares and a plus sign. 
Click this button to view the font you 
selected. 

A side bar will pop up with information 
about your font and a link you can use 
to embed your font. Use your mouse to 
highlight the whole link and copy it to 
your clipboard.

❏ Add the embed link to your sketch’s HTML file. Find the small button under the play button that 
has a small arrow on it and click it. 

You should now see the three files that make up your p5.js sketch: an index.html file, a 
styles.css file, and a sketch.js file. So far, we have only been working in the sketch.js file, but to 
add our font, we will open the index.html file. 

https://fonts.google.com/


27

❏ Click the index.html file. Locate line 8 
in the file that reads <meta 
charset="utf-8" /> and paste 
your font embed link under that line of 
HTML.

Step 7: Extensions (cont.)

❏ Tell p5.js to use your font. Now we need to go back to our sketch.js file and add a new function 
to activate the font. First, click the sketch.js file in the left sidebar. Next, use the textFont() 
function to display your new font. Include this new line of code inside setup().

NOTE: The p5.js reference page will tell you to use the loadFont() function. Instead of that, we just added the 
font directly to our HTML.

FUNCTION DESCRIPTION

textFont(’font name’);

➔ textFont: The function name. To learn more, see the 
textFont() entry in the p5.js Reference

➔ (): We use parentheses to tell our program that it 
needs to call the function. Sometimes we include 
parameters or inputs in the function inside our 
parentheses.

➔ ‘font name’: Write the font name displayed on the 
Google Font webpage in single or double quotation 
marks. 

➔ ,: We use commas to separate the different 
parameters or inputs in the functions.

➔ ;: All lines of code in p5.js must end with a semicolon.

https://p5js.org/reference/#/p5/textFont


28

❏ Test it. Press the play button to run your code and make sure that your font displays properly. If 
it doesn’t, make sure you spelled the font name correctly and that your code is in the right 
location.

Step 7: Extensions (cont.)

Extension 2: Save your drawing (4-8 mins)
You might be saying to yourself, this is great and all, but how do I save my image to share it? Well, you can 
take a screenshot or you can get fancy with a new function: mousePressed(). This function runs the 
code inside it whenever you click the mouse inside the canvas area. Unlike our other functions, it goes 
outside of setup() and draw() and does not take any parameters.

❏ Add the mousePressed() function. Place it under the draw() function.

❏ Tell p5.js to save your canvas.To download our image, we can use the save() function with a

Here is a link to our solution code for extension 2. We recommend trying it yourself first and using this 
resource when you get really stuck or want to check your work.

Extension Resources
Below are some helpful resources we used to create this extension. These will help you get started, 
but remember that there are lots more resources only a search engine away!
➔ Google Fonts
➔ textFont()
➔ Introduction to HTML

Here is a link to our solution code for extension 1. We recommend trying it yourself first and using this 
resource when you get really stuck or want to check your work.

filename and file extension. For example, we could 
use “myArt.png” or “digitalArtwork.jpg”. Add the 
save()function with your file name and extension 
inside the mousePressed()function.

❏ Test it. Press the play button to run your code if it 
doesn’t run automatically. Position your mouse 
inside the canvas and click. An image file with the 
name you specified should begin downloading to 
your machine. 

Extension Resources
Below are some helpful resources we used to create this extension. These will help you get 
started, but remember that there are lots more resources only a search engine away!
➔ mousePressed()
➔ save()
➔ Coding Train p5.js Tutorials by Dan Shiffman

https://p5js.org/reference/#/p5.Element/mousePressed
https://p5js.org/reference/#/p5.Image/save
https://editor.p5js.org/GWCEducation/sketches/1ZtXCZMZG
https://fonts.google.com/
https://p5js.org/reference/#/p5/textFont
https://www.w3schools.com/html/html_intro.asp
https://editor.p5js.org/GWCEducation/sketches/1yGNR1vZa
https://p5js.org/reference/#/p5.Element/mousePressed
https://p5js.org/reference/#/p5.Image/save
https://thecodingtrain.com/beginners/p5js/


29

Step 7: Share Your Girls Who Code at Home Project! (5 mins)
We would love to see your work and we know others would as well. Share your sketch with us! Don’t 
forget to tag @girlswhocode #codefromhome and we might even feature you on our account!

Stay tuned for more Girls Who Code at Home activities!

Project Link

Follow these steps to share your project:

➔ Save your project first.

➔ In the File Menu, choose the Share option in the 
dropdown menu.

➔ Choose the Link option in the dropdown menu. 

➔ Copy the Present Link paste it wherever you 
would like to share it.


