
Girls Who Code At Home
Debug the Way

Unplugged Activity



2

Activity Overview

A computer scientist works to write code, or instructions, for a computer to do a task. It may 
be surprising to know that most programmers, or people who write code, actually spend most 
of their time debugging, or finding and fixing problems, in their code! Debugging requires 
persistence and a willingness to keep looking for new ways to solve problems. In this activity 
you will get a chance to debug code that is supposed to move a character through a maze.  
You will also get a chance to write your own code and challenge a friend to debug it! Before 
you start learning more about debugging, check out the featured Woman in Tech Spotlight, 
Brittany Wenger. At the age of 15, Brittany created a tool that helps diagnose patients with 
breast cancer so they can receive early treatment. 

Materials
● (Optional) Small Game Board Piece or Object
● Maze Debugging Worksheet Solutions



BRAVERY

Brittany was able to use technology to help women around the world 
diagnose breast cancer early for immediate treatment.

Think about a time when you went above and beyond on a project or 
activity. What motivated you to work so hard?

3

Women in Tech Spotlight: Brittany Wenger

When you have a question, how do you go about trying to find 
an answer? What do you do if your first source doesn’t have 
an answer? Brittany Wenger, turned to code in her search for 
answers to important questions about breast cancer. 

When Brittany was 15 years old, her cousin was diagnosed 
with breast cancer. Approximately 1 in 8 women in the United 
States will be affected with breast cancer in her lifetime. Early 
detection of breast cancer in a localized state has a 100% 
survival rate.  Brittany decided to take action and developed 
an algorithm that gathers data from a patient and estimates

if a breast mass is malignant or benign. Her algorithm Cloud4Cancer was able to reach 
99.11% accuracy in classifying breast mass correctly. 

Watch the video about Brittany Wenger to see how code can be used to find answers to big 
questions that can impact lives.

Reflect

Being a computer scientist is more than just being great at coding. Take some time to 
reflect on how Brittany and her work relates to the strengths that great computer scientists 
focus on building: bravery, resilience, creativity, and purpose. 

`

Share your responses with a family member or friend.  Encourage others to read more 
about Brittany to join in the discussion!

https://cloud4cancer.appspot.com/
https://youtu.be/DcSWmoiLhzY


4

Step 1: Understanding Debugging (2 mins)

Think of a time you tried to solve a problem, this could be from a difficult assignment at 
school, or trying to locate a missing item. Were you able to solve it right away? Many times 
when we try to solve a problem we might face a couple failures before we succeed. 
Programmers spend most of their days trying to find and solve problems in their code.  

An error in a computer program or hardware is called a bug. The process of identifying and 
removing errors or bugs from computer hardware or software is called debugging. The origins 
of these terms stem back to Grace Hopper, one of the early pioneers of computer science.  
While working on one of the first computers, Grace Hopper’s team found a moth inside the 
computer which caused an error, an actual physical bug! Grace’s journal entry of the taped 
moth is now referred to as the first recorded computer bug in history. It is on display at the 
Smithsonian Museum of American History in Washington D.C. 

In this activity you will get a chance to debug code that is supposed to move a character 
through a maze from a starting location to an ending location, while also trying to pick up a 
star.  You will also get a chance to write your own code and challenge a friend to debug it!

The first recorded computer bug

Step 2: Rules of the Game (2 mins)
The goal of the game is to move a character from the starting point, pick up all the stars, and get to the 
end point by finding and fixing all the bugs (or problems) in the instructions.



5

Step 2: Rules of the Game (continued)
Rules

1. Your character must start at the starting location        .

2. Your character must end at the ending location        . Once your character gets to the 
final location, the game ends and no instructions are followed afterwards.

3. You must pick up the star        before getting to the ending location.
4. The character must be in the same space as the star before picking it up.
5. You can only edit or remove instructions. Editing a step means replacing any values in 

the instructions with a different value or fixing a spelling error.
6. ONLY these instructions are allowed. Spelling and capitalization must be exactly the 

same as what is listed below.
a. Move Left
b. Move Right
c. Move Up
d. Move Down
e. Repeat [1 to 5] times:
f. Stop Repeat
g. Pick Up Star

7. You may not add instructions of your own

Step 3: Check for Valid Instructions (2 mins)
Just like learning a different speaking language (like Spanish, French, German, etc.) coding has 
its own set of rules. Of the following options, circle which lines of code are valid. Remember 
that all the valid instructions are listed above (rule #6).  Recall that spelling and capitalization 
counts!

A. Turn Right B. Move Forward C. Pick Up 
Starzzzz

D. Repeat 3 
times:

E. Repeat 10 
times:

F. Move to the Left G. Move Up H. Stop Repeat

I. Pick Up 
Stars

J. Drop Star K. Move to Goal L. Move Down

Be sure to check your answers with the solutions handout at the end of the document.



6

Step 4: Time to Start Debugging! (5 mins)
Below you will see the game board with the start flag at (A, 3), star at (B, 2), and finish line at 
(A, 1).  When we run the code, or instructions, we expect the character to move from the start 
flag, pick up the star, and then end at the finish location at (A , 1). However we noticed the 
character’s actual actions include not picking up the star and ending at (C , 1).

A B C

1

2

3

Expected Actions Actual Actions

● Pick Up Star

● Ends on Finish 
Location (A, 1)

● Star is not 
picked up

● Ends on 
Location (C, 1)

Incorrect Code/Instructions Debugged Code/Instructions

1. Move Up

2. Move Right

3. Pick Up Starz

4. Move Up

5. Move Right

HINT: There are 2 bugs

You can check your answers with the solutions at the end of the document.

Using the rules that were listed before, help fix (or debug) the incorrect code and write the 
correct code under the label debugged code/instructions.

Tip: Use a small game board piece or object around the house to act as the character. You 
can move it around the maze as you execute each line of code to help you keep track of the 
character’s location



7

Step 5: Tackle the Next Challenge (5-10 mins)
Oh no! Another bug! Help debug the instructions below. Don’t forget to check the rules.

Incorrect Code/Instructions Debugged Code/Instructions

1. Move Up

2. Move Right

3. Move Up

4. Move Right

5. Pick Up Star

6. Move Down

7. Move Left

HINT: There are 2 bugs

BONUS: The instructions propose one solution to pick up the star and move to the goal, but there are 
multiple paths to do this. Can you think of another set of code, or instructions, that has the same 
outcome?  
 

You can check your answers with the solutions at the end of the document.

A B C

1

2

3

Expected Actions Actual Actions

● Pick Up Star

● Ends on Finish 
Location (B, 2)

● Star is not 
picked up

● Ends on 
Location (B, 2)



8

Step 6: Debugging Loops (5-10 mins)
Yet another bug! But wait, this map looks similar to the one in the last challenge. The correct 
code should follow the same path as the code in challenge #2 but uses the repeat command. 
In computer science we call these loops! Loops are used to repeat a set of instructions 
multiple times. We typically indent the instructions that we want to repeat to make sure the 
computer knows how many lines of code to repeat. 

Incorrect Code/Instructions Debugged Code/Instructions

1. Repeat 1 times:

2.   Move Up

3.   Stop Repeat

4. Repeat 3 times:

5.   Move Right

6.   Stop Repeat

7. Pick Up Star

8. Go Left

HINT: There are 3 bugs 

You can check your answers with the solutions at the end of the document.

A B C

1

2

3

Expected Actions Actual Actions

● Pick Up Star

● Ends on Finish 
Location (B, 2)

● Star is not 
picked up

● Ends on 
Location (B, 2)



9

Step 7: Make Your Own! (10-15 mins)
This time it is your turn! Try to challenge a friend by writing your own set of code that is filled 
with at the most 4 bugs. Be sure to fill out the expected actions vs. actual actions table for 
your friend. Use this sheet as your answer key and once you are happy with your challenge, use 
the next sheet to copy the incorrect code, maze, and action table to challenge your friend!
*Helpful Tip:* Try writing the correct instructions first and picking 4 lines or less to change or 
add additional bugs to your correct code.  

Incorrect Code/Instructions Debugged Code/Instructions

1.

2.  

3.  

4.

5.  

6.  

7.

8.

9.

10.

HINT: There are __ bugs 

A B C

1

2

3

Expected Actions Actual Actions

● Pick Up Star

● Ends on Finish 
Location (    ,    )

● Star is 

● Ends on 
Location (   ,   )



10

CREATOR: CHALLENGER:

Incorrect Code/Instructions Debugged Code/Instructions

1.

2.  

3.  

4.

5.  

6.  

7.

8.

9.

10.

HINT: There are __ bugs 

A B C

1

2

3

Expected Actions Actual Actions

● Pick Up Star

● Ends on Finish 
Location (    ,    )

● Star is 

● Ends on 
Location (   ,   )



11

Step 8: Share Your Creation! (5 mins)

1. Take a picture or scan your maze and challenge a friend to debug your instructions!

2. Don’t forget to share your maze on social media. Tag @girlswhocode #codefromhome 
and we might even feature you on our account!



12

Debug the Way Maze Solutions

Step 3: Check for Valid Instructions

A. Turn Right

Not a valid command

B. Move Forward

Not a valid command

C. Pick Up 
Starzzzz

Spelling Error

D. Repeat 3 
times:

E. Repeat 10 
times:

Not a valid 
command. Repeat can 
be done 1-5 times.

F. Move to the 
Left

Not a valid command

G. Move Up H. Stop Repeat

I. Pick Up 
Stars

Spelling Error

J. Drop Star

Not a valid command

K. Move to Goal

Not a valid command

L. Move Down



13

Step 4: Time to Start Debugging Solutions

A B C

1

2

3

Expected Actions Actual Actions

● Pick Up Star

● Ends on Finish 
Location (A, 1)

● Star is not 
picked up

● Ends on 
Location (C, 1)

Incorrect Code/Instructions Debugged Code/Instructions

1. Move Up 1. Move Up

2. Move Right 2. Move Right

3. Pick Up Starz 3. Pick Up Star

4. Move Up 4. Move Up

5. Move Right 5. Move Left



14

Step 5: Tackle the Next Challenge Solutions

Incorrect Code/Instructions Debugged Code/Instructions

1. Move Up 1. Move Up

2. Move Right 2. Move Up

3. Move Up 3. Move Right

4. Move Right 4. Move Right

5. Pick Up Star 5. Pick Up Star

6. Move Down 6. Move Down

7. Move Left 7. Move Left

BONUS: The instructions propose one solution to pick up the star and move to the goal, but there are 
multiple paths to do this. Can you think of another set of code, or instructions, that has the same 
outcome?  
 
Another proposed set of instructions is Move Right, Move Right, Move Up, Move Up, Pick Up Star, 
Move Down, and Move Left. The last two steps can also be interchanged and still be a valid 
solution. Challenge #4 will also explore yet another type of solution using the repeat loop.

A B C

1

2

3

Expected Actions Actual Actions

● Pick Up Star

● Ends on Finish 
Location (B, 2)

● Star is not 
picked up

● Ends on 
Location (B, 2)



15

Step 6: Debugging Loops Solutions

Incorrect Code/Instructions Debugged Code/Instructions

1. Repeat 1 times: 1. Repeat 2 times:

2.   Move Up 2.   Move Up

3.   Stop Repeat 3.   Stop Repeat

4. Repeat 3 times: 4. Repeat 2 times:

5.   Move Right 5.   Move Right

6.   Stop Repeat 6.   Stop Repeat

7. Pick Up Star 7. Pick Up Star

8. Go Left 8. Move Left

A B C

1

2

3

Expected Actions Actual Actions

● Pick Up Star

● Ends on Finish 
Location (B, 2)

● Star is not 
picked up

● Ends on 
Location (B, 2)

Note that this solution is actually longer than the previous, so WHY should we use 
loops? Loops come in handy when there are commands or steps we want to do a lot of times 
(more than twice) or have multiple steps that we want to be repeated. In this particular case 
we do not see less steps, but there are other cases where it does help our code to be shorter 
and more readable to anyone else who may be reading our code.


