
Girls Who Code At Home
Debug the Missing Code Part 2

Reference Guide

2

Debug the Missing Code Part 2 Reference Guide

In this document you will find all of the answers to some of the questions in the activity.
Follow along with the activity and when you see this icon, stop and check your ideas
here.

Step 1: Meet the logic bugs

Why do logic errors cause problems?
The color will be brownish because the program doesn’t tell the painter to clean their brush after each use.
It only tells them to clean the brush at the end after they are done painting.

For the last circle to be that vibrant purple, you would add a Rinse brush instruction after each color:

Dip brush in red paint

Paint circle

Rinse brush

Dip your brush in green paint

Paint circle

Rinse brush

Dip your brush in purple paint

Paint circle

Rinse brush

Let canvas dry

CODE RESULTS

Step 4: Review the code
Below is a detailed explanation of the broken code at the beginning of the step.

Declare variables
First, we declared the variables to store the score for each bug (e.g. butterflyScore). Next, we
declared a series of variables to store the HTML element for each of the answer buttons in our
questions (e.g. q2a3). We also declared variables to store how many questions a person has clicked on
(questionCount) and to store the result and restart HTML elements.

https://repl.it/@GWCEducation/Buggy-Personality-Quiz-Broken-Project-Logic-error#README.md

Listen for button clicks
Next, we added event listeners to all of our buttons. Event listeners listen for certain input on a
webpage, like a mouse click, a keypress, or scrolling. If the browser “hears” or detects the input that it’s
waiting for, the program takes an action. We define this action in a function that goes inside the event
listener. For example, if a person chooses Mochi for Question 1, they click the q1a1 button. When they
click the button, the browser executes the code in the butterfly function.

3

JAVASCRIPT DESCRIPTION

q1a1.addEventListener("click", butterfly); ➔ q1a1: Variable that stores input from the
mochi button (the first answer to the first
question).

➔ . : The period or dot tells our program to
attach the variable to the method after it.
Here that method is addEventListener.

➔ addEventListener: The keyword to call
the event listener method (or function).

➔ "click": The event we are listening for.
➔ butterfly: The function that will execute

if the event occurs.
➔ ; : All JavaScript statements end with a

semicolon.

Track and update the score
Now we need to create the functions that we listed inside our event listeners. Four of these track the
score of each bug: bee, butterfly, grasshopper, and ladybug. If one of these functions is called
(i.e. when a person clicks a button with that function attached to it), we increase the bug’s score by 1
and we increase the questionCount variable by 1.

Next, we have a conditional statement to evaluate when the quiz is complete. If questionCount is
equal to 3 (we use the comparison operator == here, not the assignment operator =), then we
execute the updateResult function below. This function checks each score to see if it is greater than
or equal to 2. If one of them meets that condition, this function updates the text at the bottom with your
result. If none of them do, then we ask the person to try again.

Restart the quiz
The final function executes if the Restart button is clicked. Here, restart means resetting all the scores
and the questionCount to 0. Otherwise, the numbers would continue increasing.

https://www.w3schools.com/js/js_htmldom_eventlistener.asp
https://www.w3schools.com/js/js_comparisons.asp

4

Step 5: Describe the problem
Below is an example of one way to describe what we want to happen in our program.

➔ When a person clicks an answer button, the program calls the specified bug function (i.e. bee,
butterfly, grasshopper, or ladybug) attached to it in the event listener.

➔ The function adds 1 to the current score of that bug and adds 1 to the current questionCount
value.

➔ Test If the questionCount value is equal to 3 each time the questionCount value increases.
Note: Since the quiz has three questions, we know a person has finished if this value equals 3. If
we had four questions we would change it to 4.

➔ If questionCount is not equal to 3, don’t do anything and allow the person to continue the quiz.
➔ If questionCount is equal to 3, call the updateResult function to test the value of each bug’s

score.
➔ Evaluate each bug’s score and return a result in the updateResult function:

◆ If beeScore is greater than or equal to 2, update the bottom text to say “You are a bee!”
◆ Else if butterflyScore is greater than or equal to 2, update the bottom text to say “You

are a butterfly!”
◆ Else if grasshopperScore is greater than or equal to 2, update the bottom text to say

“You are a grasshopper!”
◆ Else if ladybugScore is greater than or equal to 2, update the bottom text to say “You are

a ladybug!”
◆ Else update the bottom text to say “Hmm...not sure. Try again later”

➔ When the Restart button is clicked, call the restartQuiz function set all variables to 0.

Step 6: Make it observable
Code with console.log() added to each scoring function:

58
59
60
61
62
63
64

// Track bee score
function bee() {
 beeScore += 1;
 questionCount += 1;
 console.log("questionCount = " + questionCount + "\t" +"beeScore = " +
 beeScore);
}

5

65
66
67
68
69

70
71
72
73
74
75
76

77
78
79
80
81
82
83

84

// Track butterfly score
function butterfly() {
 butterflyScore += 1;
 questionCount += 1;
 console.log("questionCount = " + questionCount + "\t" +"butterflyScore = "
 + butterflyScore);
}

// Track grasshopper score
function grasshopper() {
 grasshopperScore += 1;
 questionCount += 1;
 console.log("questionCount = " + questionCount + "\t" +"grasshopperScore =
" + grasshopperScore);
}

// Track ladybug score
function ladybug() {
 ladybugScore += 1;
 questionCount += 1;
 console.log("questionCount = " + questionCount + "\t" +"ladybugScore = "
 + ladybugScore);
}

Answers to our clues:

❏ What controls the result text?

❏ The updateResult function.

❏ When do we call (or use) the updateResult function?

❏ In the conditional statement that evaluates when questionCount is equal to 3.

❏ Is the conditional statement running when we need it to?

❏ Nope!

6

Step 8: Test one thing at a time

Hypothesis #1: Testing questionCount conditional in the bee function

Hypothesis #2: Testing questionCount conditional in remaining functions

58
59
60
61
62

63
64
65
66
67

// Track bee score
function bee() {
 beeScore += 1;
 questionCount += 1;
 console.log("questionCount = " + questionCount + "\t" +"beeScore = " +
 beeScore);
 // Add conditional
 if (questionCount == 3){
 updateResult();
 }
}

69
70
71
72
73

74
75
76
77
78
79
80
81
82
83
84

85
86
87
88
89

// Track butterfly score
function butterfly() {
 butterflyScore += 1;
 questionCount += 1;
 console.log("questionCount = " + questionCount + "\t" +"butterflyScore = "
 + butterflyScore);
 // Add conditional
 if (questionCount == 3){
 updateResult();
 }
}

// Track grasshopper score
function grasshopper() {
 grasshopperScore += 1;
 questionCount += 1;
 console.log("questionCount = " + questionCount + "\t" +"grasshopperScore =
 " + grasshopperScore);
 // Add conditional
 if (questionCount == 3){
 updateResult();
 }
}

91
92
93
94
95

96
97
98
99
100

// Track ladybug score
function ladybug() {
 ladybugScore += 1;
 questionCount += 1;
 console.log("questionCount = " + questionCount + "\t" +"ladybugScore = "
 + ladybugScore);
 // Add conditional
 if (questionCount == 3){
 updateResult();
 }
}

7

In this error, the program never evaluated the conditional that called the updateResult
function. While it may seem logical to test the value of questionCount after all of the
bug score functions, we actually need to test it each time a bug score function runs. We
solved the problem by placing the conditional inside each bug score function so the
program can check the value of questionCount after a person clicks a button.

Bug Fixed!

