
Girls Who Code At Home
Debug the Missing Code: Part 2

Logic Bugs

What you think you
programmed:

IF it’s cold outside,
THEN wear a jacket.

What the computer read as
your program:

IF it’s cold outside,
THEN dance to pizza.

2

In Part 1, we learned how to identify and debug syntax errors in the
Buggy Personality Quiz using the console window. In Part 2, we are
going to examine a new type of bug, a logic bug, and learn a set of
debugging strategies to repair our Buggy Personality Code.
Programmers use logic to tell their program what actions to take.
Sometimes, however, our own logic doesn’t line up with the
instructions that the computer needs to run a program
successfully. We’ll be working with JavaScript just like we did in
Part 1, but the debugging approaches apply to all languages. You
do not have to know JavaScript to complete this activity.

Materials
➔ Repl.it Editor
➔ Buggy Personality Quiz Sample

Project
➔ Buggy Personality Quiz - Broken

Project (with logic error only)
➔ Missing Code Reference Guide

Learning Goals
By the end of this activity you will be able to...

❏ describe the difference between logic errors
and syntax errors.

❏ describe a variety of strategies for debugging
code.

❏ apply debugging strategies to fix the logic error
in a broken website.

Prior Knowledge
Before embarking on this project, we recommend that you:

➔ have some familiarity with core computational concepts including variables, functions, and
conditional statements in any programming language.

➔ have beginner experience using a text-based language like JavaScript, Python, Swift, etc.

If you want to learn more about
programming in JavaScript, check out

the Girls Who Code at Home Virtual Hike
activity.

If you want to practice debugging in the
Scratch, check out the Brave Not Perfect
Debugging with Scratch Girls Who Code

at Home activity.

You should have already completed Part 1 of Debug the Missing Code
before embarking on this activity.

https://repl.it/
https://bug-personality-quiz-sample-project.lizaatgwc.repl.co/
https://bug-personality-quiz-sample-project.lizaatgwc.repl.co/
https://repl.it/@GWCEducation/Buggy-Personality-Quiz-Broken-Project-Logic-error#README.md
https://repl.it/@GWCEducation/Buggy-Personality-Quiz-Broken-Project-Logic-error#README.md
https://drive.google.com/file/d/10AEeMrZ_KUsLzPknZV3C19dXfVDcaPmN/view?usp=sharing
https://www.w3schools.com/js/js_variables.asp
https://www.taniarascia.com/how-to-define-functions-in-javascript/
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Building_blocks/conditionals
https://girlswhocode.com/assets/downloads/craft-prod/downloads/Girls-Who-Code-At-Home-Virtual-Hike.pdf
https://girlswhocode.com/assets/downloads/craft-prod/downloads/Girls-Who-Code-At-Home-Brave-Not-Perfect.pdf
https://girlswhocode.com/assets/downloads/craft-prod/downloads/Girls-Who-Code-At-Home-Brave-Not-Perfect.pdf
https://girlswhocode.com/programs/code-at-home

3

Simone Giertz

Reflect
Remember, being a computer scientist is about more than just being great at coding. Discuss how Simone
and her work relates to the strengths that great computer scientists focus on building - just like you are in
your Girls Who Code program.

Share your responses with a family member or friend. Encourage others to read more about Simone
to join in the discussion!

Simone Giertz’s inventions include robots that wash hair, chop
vegetables, and apply lipstick in the morning. However, her
robots rarely (if ever) succeed and are mostly useless, and
Simone embraces this failure! She says that "the true beauty
of making useless things [is] this acknowledgment that you
don't always know what the best answer is.”

Known to her fans as the Mistress of Malfunction, inventor
and robot enthusiast Simone Giertz spends most of her time
tinkering with Arduinos on her YouTube channel, hosting
Tested with Adam Savage, and speaking about her wacky
projects to live audiences.

PURPOSE

Simone keeps a positive attitude even when her robots or projects don't work
as expected. How can you help yourself stay optimistic in the face of
setbacks?

Source: Mashable

Watch this video to learn more about the Applause Machine, one of Simone's wacky inventions, and her
inspiration behind the product and design.

After being diagnosed with a non-cancerous brain tumor in 2018, Simone took time away from her
inventions for treatment and reflection. Now that she’s in recovery, Simone is still inventing, but she’s
shifted her focus to bigger and more functional products. Her most recent big hack? Converting a Tesla
into a pickup truck. Meet the Truckla.

https://mashable.com/feature/simone-giertz-shitty-robots-brain-tumor-recovery-self-care/
https://www.youtube.com/watch?v=iNARtZWxEZA&feature=emb_logo
https://www.youtube.com/watch?v=R35gWBtLCYg

4

Step 1: Meet the logic bugs (6-8 mins)
What is logic? (1 min)
Contrary to what you might think, computers are not smart. They are machines that (at least for now)
do not know how to make decisions and perform an action on their own. Computers need humans to
tell them what to do - to program them with a set of instructions. This instruction set is called an
algorithm. But how does the program know which instruction to follow or when to follow it? This is
where logic comes in. We use logic to tell our program the order or sequence to use to complete its
tasks.

How do I use logic? (3-4 mins)
Here are three common structures programmers use to add logic and determine sequencing in their
programs. We’ve written these examples in JavaScript, but the usage of these structures translates to
most other programming languages. Source: Pixabay Source: The Met

Loops to repeat a series of
instructions until a condition is
met. The main types of loops
are for loops and while
loops.

while(winner == false){

 keepPlaying();

}

This while loop tells the
program to run the
keepPlaying function as long
as there is no winner.

Note: We will not be working with
loops in this activity, but they are
important to know about!

Create a new function
whenever you have chunks of
code you want to reuse or to
keep your code readable.
Some functions return
specified values while others
do not.

if(score == 10){
 updateWinner();
 restartGame();
}

function updateWinner(){
 console.log(“Winner!”);
}

function restartGame{
 score = 0;
}

This if statement tells the
program to update the winner
and restart the game if the score
is 10. The functions make the
code more readable because we
group the substeps into
functions that have descriptive
names.

These statements tell our
program how to make
decisions by evaluating if a
statement is true or false using
if, else if, else and
comparison or logical
operators.

if(numPlayers >= 5){

 playAmongUs();

} else {

 playScattergories();

}

This conditional makes a
decision about which game to
play based on the number of
players. If the number of
players is greater than or equal
to five, play Among Us,
otherwise play Scattergories.

CONDITIONAL STATEMENTS FUNCTIONS LOOPS

https://pixabay.com/photos/baklava-with-walnut-oriental-kitchen-4183183/
https://www.metmuseum.org/blogs/collection-insights/2020/animal-crossing-new-horizons-qr-code
https://www.w3schools.com/js/js_loop_for.asp
https://www.w3schools.com/js/js_loop_while.asp
https://www.w3schools.com/js/js_if_else.asp
https://www.w3schools.com/js/js_operators.asp

Where do bugs live? (1 min)
Bugs can happen at any point in your program. You might find them hiding in your variables, functions,
conditionals, and more.

5

Step 1: Meet the logic bugs (cont.)

The sequence of this code if the temperature is
47 degrees Fahrenheit:

Test Condition 1: temp <= 65?

➔ Condition 1 evaluates as TRUE
➔ Go to wearJacket function
➔ Run all lines of code in wearJacket

function
➔ Exit

The sequence of this code if the temperature is
84 degrees Fahrenheit:

Test Condition 1: temp <= 65?

➔ Condition 1 evaluates as FALSE

Test Condition 2: temp >= 66?

➔ Condition 2 evaluates as TRUE
➔ Go to removeJacket function
➔ Run all lines of code in removeJacket

function
➔ Exit

if (temp <= 65){
 wearJacket();
} else if (temp >= 66){
 removeJacket();
}

function wearJacket(){
 Take jacket out of closet
 Unzip
 Put one arm in
 Put the other arm in
 Zip up the jacket
}

function removeJacket(){
 Unzip jacket
 Take one arm out
 Take the other arm out
 Hang in closet
}

CODE SEQUENCE

Even though the code is the same both times, the order of instructions is different. Here, the sequence of
tasks depends on the value of temp.

Why do logic errors cause problems? (2-3 mins)
These errors are a bit more difficult to solve than syntax errors. When we debugged our syntax errors, we
used the error console to identify our bugs and make changes. This is a super useful strategy for syntax
errors, but you can’t rely on the console to tell you when you have a logic error. In this case, your code might
run, but it won’t work the way you want it to. If your code doesn’t throw an error while it compiles (i.e.
converts your code to a form that the computer can execute), then the computer doesn’t think there is an
error. Logic bugs create a problem with the program flow - the sequence or order that your lines of code
execute.

https://www.w3schools.com/js/js_variables.asp
https://www.taniarascia.com/how-to-define-functions-in-javascript/
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Building_blocks/conditionals

Let’s say you want to paint bright red, green, and purple colored circles. Check out this example
instruction set for creating your painting:

6

Step 1: Meet the logic bugs (cont.)

In our current program, the last circle will likely be a muddy purplish-brown color. Why do you think that
is? How would you rewrite this “program” so the last circle is purple?

Dip brush in red paint

Paint circle in top right

Dip your brush in green paint

Paint circle in center

Dip your brush in purple paint

Paint circle in bottom left

Rinse brush

Let canvas dry

CODE RESULTS

Check your ideas in the Reference Guide on pg.2

Step 2: Build your debugging strategies (5-10 mins)

Make
changes

Hypothesize
solutions

Research
ideas

In Part 1, we learned a few debugging techniques such
as using the console to read error messages, making
observations, and testing a change you made. As you
progress into more complex code, it is helpful to have
a toolbox full of debugging strategies and a system
for implementing them.

Debugging involves a cycle of testing code, defining
the problem, hypothesizing solutions, making
changes, and testing code again until you figure it out.
All bugs are different, but there are common
strategies you can use to help you find a solution. On
the next page is a list of strategies you can use when
a bug flies into your code.

Define
problem

Search for
clues

Observe
error(s)

Test
code

Debugging
Cycle

1. Put yourself in the right mindset for debugging
Chances are you will only find a bug after you’ve spent a lot of time and invested a lot of energy into
your code. You might need to go pet your dog, get a snack, take a walk, or even sleep on it before diving
in. Debugging should happen slowly and methodically. If you are moving fast, you will likely miss
something or create new bugs.

2. Go back to basics
Are you connected to the internet? Is your code editor or IDE (i.e integrated developer environment)
functioning properly? Does your browser need to restart for an update? It might sound silly...until it fixes
everything.

3. Make a copy
Trying to fix problems can lead to more problems. Always make a copy if you need to make any big
changes. Better safe than sorry!

4. Start simple
Check the simple things first. This is a process of elimination, so get the easy ones out of the way.
Search for ground-level errors and check for mistakes in syntax. If your IDE has a debugging console,
check it for error messages. If you are programming for the web, you can also use developer tools in
the browser. Below is an example of how the same error appears in the Repl.it console on the left and
using developer tools in Chrome on the right.

7

Step 2: Build your debugging strategies (cont.)

The Repl.it console
is the black box
under the display
window. It shows an
error message in red
text with the error
location, then prints
hello world! to
the screen.

Developer tools
displays on the right
or bottom screen. The
Console tab prints
hello world! to the
screen, then shows
an error message in
red text on the left
and the location in
white on the right.

5. Search for patterns
Programming, like other human languages, relies on patterns as a way to organize and make sense of
your code. We can use patterns that we’ve seen in past code and apply them to a current challenge. For
example, let’s say you are programming a button to decrease the score each time it’s clicked. You’ve
already coded two buttons to increase the score, but you’re not sure how to program the second. You
can observe similarities or patterns in their behavior to help you find a solution.

Click me to increase by 1! Click me to increase by 2! Click me to decrease by 1!

if(clicked == true){
 score = score + 1;
}

if(clicked == true){
 score = score + 2;
}

🤔

https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_are_browser_developer_tools

6. Describe the problem
Sometimes when we look at a problem on our own for too long, we start skipping over the simple
things. But if you have to describe the problem to someone else, you have to be more detailed. Pretend
you are telling or writing a friend about your problem and describe:

❏ What you have already done.
❏ What is going wrong.
❏ What you expected or want to happen.
❏ What additions or changes you made in your code since the last time you tested it.

Revisit your planning notes, pseudocode, and/or diagrams too. Chances are you’ll spot the mistake on
your own.

7. Make it observable
It’s super helpful to observe how the values of variables change over time or when different events
occur, like a button click or text input. You will often use these variables to make decisions about your
program flow. For example:

8

Step 2: Build your debugging strategies (cont.)

console.log(“zoomCalls = “ + zoomCalls);
if(zoomCalls >= 5){
 takeWalk();
}

CODE CONSOLE

zoomCalls = 3
zoomCalls = 4

if(zoomCalls >= 5){
 takeWalk();
}

But how can you know what the value of a variable is? How do I know the number of zoomCalls? You
can use the console.log(variableName) function to print the value of a variable to the IDE’s
console window or view it using developer tools.

Note: If you want to know what value you are printing, you can add context to your values with text. Put
the text you want to print in double “ “ or single ‘ ‘ quotation marks followed by a plus sign + and the
variable name. This is especially helpful if you want to print more than one at a time!

https://www.w3schools.com/Jsref/met_console_log.asp
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_are_browser_developer_tools

8. Test one thing at a time
Here’s one scenario we definitely do not want: by changing a few “small things” in your code, you create
a new problem and now you can’t figure out if it’s the old problem or the new changes causing it. Your
goal is to isolate the problem. Change one thing at a time, then test it.

9. Search the interwebs
There are a ton of websites devoted entirely to answering questions about code errors. Chances are
pretty good that someone else has encountered your problem. Once you’ve described your problem in
detail, use your favorite search engine to find some answers. If nothing comes up, try reframing or
rewording your question - being able to search for a solution efficiently is a skill in itself! You can also
copy any error messages and start your search there. If you are programming for the web, W3Schools
and MDN are great resources. StackOverflow is a good site for developers working in all languages to
ask questions and learn from other people’s solutions. Whatever language you are programming in,
there are likely forums and many websites or posts devoted to learning it.

10. Ask a friend

9

Step 2: Build your debugging strategies (cont.)

If you still can’t figure it out after trying everything above, phone in a friend, mentor, or teacher.

For more debugging resources, check out this video series from Clay Shirky at NYU
and this fantastic Field Guide to Debugging from the p5.js community.

Step 3: Test the quiz (3-4 mins)
Now that we have a handy toolkit of debugging strategies, it’s time to solve our last bug - the logic bug.
First, we’ll need to figure out what and where the error is before we can even think about solving it.

Remember: Much of the time, the program isn’t wrong because it is following your instructions. This
means that logic bugs are really a result of our own misconceptions about how our program should
work vs. how it actually works. Logic errors are about mistakes in how your program executes. Before
we dive in, let’s test the quiz for any clues.

Take the quiz (2-3 mins)
When we tested the buggy version at the beginning of this activity, the quiz never returned our result.
Now that we’ve fixed our syntax bugs, let’s test it again just to make sure nothing else has changed.

❏ Take the quiz 3-4 times.
❏ Answer the questions in different configurations.
❏ Use the restart button after you finish to reset the quiz.

https://www.w3schools.com/
https://developer.mozilla.org/en-US/
https://stackoverflow.com/
https://vimeo.com/channels/debugging
https://p5js.org/learn/debugging.html

There we have it - still no results! And no more error messages. At this point, the best thing to do is
move back, literally and figuratively. If you need a quick break and a snack, now’s the time. In the next
section, we’ll start our search for clues by reviewing how the code works.

10

Step 3: Test the quiz (cont.)

Screenshot of the result text at the
bottom that says “You are a…” and a
Restart button underneath it.

Step 4: Review the code (3-7 mins)
You probably read the code and comments as you fixed the first bugs, but if you didn’t, go back and do
it now. It’s totally ok if you don’t understand everything that is going on. Our goal is to get a handle on
the program flow, so we just need a high level understanding at this point.

Check your ideas in the Reference Guide on pg 2.

Step 5: Describe the problem (5-7 mins)
Let’s start by describing what we want to happen. Grab a pen and paper or open a text editor and write
out what the program should do when a person takes the quiz. We’ve included the first step below.

➔ When a person clicks an answer button, the program calls the specified bug function (i.e. bee,
butterfly, grasshopper or ladybug) attached to it in the event listener.

Check your ideas in the Reference Guide on pg 4.

After writing this out, we can see how important it is to know the value of our scoring variables over the
course of our program. For example, if grasshopperScore is greater than 4 and no result is returned,
that is a huge clue for us!

11

Step 6: Make it observable (10-15 mins)
How do we access the value of our variables? With console.log() of course! We want to know the
values of each bug score variable and questionCount each time they are updated. This last part is
important because it helps us know where to put the console.log() function. We want to know
these values after a person has clicked the button, so we will put console.log() inside each bug
score function.

❏ Use console.log() to print the score variable and questionCount value inside the
functions below. Add context to your messages by using single or double quotations and a plus
sign to add explanatory text so you know which value goes with which score (see Step 3 for an
example if you need it).
❏ bee function
❏ butterfly function
❏ grasshopper function
❏ ladybug function

Tip: You can use “\t” to create a space between the two values!

Check your ideas in the Reference Guide on pg 4.

Once you have added console.log() to your functions, it’s time to test your code!

❏ Click the Run button.
❏ Click on Mochi for question one, then check the console window.

Finally! We have some output from our program! The following text will display in the console:

 questionCount = 1 butterflyScore = 1

❏ Now click City for question two and check the console. The following text should display:

 questionCount = 1 butterflyScore = 1
 questionCount = 2 beeScore = 1

Looking good so far! Our values are increasing with each click, so we know our bug functions
are working.

12

❏ For the third question, click on 2018 and check the console. The following text should display:

At this point, we should have a result returned to us. The questionCount is equal to 3 and we
have a score that is greater than or equal to 2 (the butterflyScore), but the result text has
not changed.

Let’s think about these clues and ask ourselves a few questions:

❏ What controls the result text?
❏ When do we call (or use) the updateResult function?
❏ Is the conditional statement running when we need it to?

Step 6: Make it observable (cont.)

 questionCount = 1 butterflyScore = 1
 questionCount = 2 beeScore = 1
 questionCount = 3 butterflyScore = 2

Check your ideas in the Reference Guide on pg 5.

Step 7: Search for patterns (1-2 mins)
We are starting to narrow down the problem to the conditional statement at line 82:

81
82
83
84

// Track for end of quiz
if (questionCount == 3){
 updateResult();
}

Right now, this conditional tests the questionCount value after all of the bug score tracking
functions. You may have noticed a pattern that updates to the score and questionCount variables
happen inside each bug function. Maybe we need to test the value of questionCount inside each
function!

Step 8: Test one thing at a time (5-10 mins)
Let’s test this hypothesis. Instead of changing all the functions, let’s try changing the bee function first.
If that works, then we can change the remaining functions.

13

❏ Copy the full questionCount conditional statement. Be sure to get all the curly brackets!

Step 8: Test one thing at a time (cont.)

if (questionCount == 3){
 updateResult();
}

❏ Paste it inside of the bee function. It should be underneath the console.log() function, and
above the closing curly bracket.

❏ Run your code.

❏ Test your hypothesis by selecting all bee responses. Click the button of the bee responses for
each question:

❏ Q1: Fruit
❏ Q2: City
❏ Q3: 2019

❏ Check the result text. Do the results show up or do we still have a bug? You should notice that
we did get the bee result which makes us think that maybe we have identified the problem! Let’s
test to see if our hypothesis works for the other results.

Screenshot of the result text at the
bottom that says “You are a bee!” and
a Restart button underneath it.

We have a result that matches our choices when testing our hypothesis on the bee responses! It seems
we’ve identified the problem causing the error.

❏ Add the conditional statement in the same location for the remaining functions. Remember to
test one hypothesis at a time. Follow similar steps to test the following functions:

❏ butterfly function
❏ grasshopper function
❏ ladybug function

Test the program again. Answer questions in various configurations and see what result gets returned.
There is a scoring key on the next page to help you test.

Check your ideas in the Reference Guide on pg 6.

14

Step 8: Test one thing at a time (cont.)

Bug Result bee butterfly grasshopper ladybug

Q1: Dessert
Fruit
q1a4

Mochi
q1a1

Cookies
q1a2

Cake
q1a3

Q2: Vacation
City
q2a2

Beach
q2a3

Woods
q2a1

Mountains
q2a4

Q3: Color
2019
q3a4

2018
q3a2

2020
q3a3

2017
q3a2

Step 9: Extensions (5-75 mins)
Extension 1: Write your personal debugging checklist (5-10 mins)
Customize the strategies above to find an approach that works for you! When you first start
programming and encountering different errors, it’s not easy to remember where to start. Grab a pen
and paper or open your fav text editor and create a list of the strategies you want to remember. Put it
somewhere you can easily access so you know where to go when you face your next bug!

Extension 2: Disable the buttons (15-20 mins)
Right now, the user could click more than one answer
choice for a given question and mess up the results of
the quiz. Consider how you might disable the answer
choice buttons once one of them is clicked.

You can check out an
example of this Extension here.

You debugged the Buggy Personality Quiz successfully! Now that we have a fully
functioning quiz, you can move onto the Extensions to learn more.

Tip: Want to try to avoid logic errors altogether in the future? Put in the time to plan,
diagram, and writing out your code in human readable language (i.e. pseudocode).

Congratulations!

https://buggy-personality-quiz-sample-project-extension-3.lizaatgwc.repl.co/

15

To get started you might:

❏ Create functions that disable all the answer buttons for a given question.
❏ Then you can add another event listener for each answer choice button that calls your disable

function whenever one of the answer choice buttons are clicked.
❏ Finally, if you added an extension to restart the game, you'll also want to make sure you enable

all of your buttons again as part of your restart function.

Extension Resources

➔ HTML DOM Button Disable Property
➔ Event listeners
➔ JavaScript functions
➔ JavaScript HTML DOM

Extension 3: Customize the Personality Quiz (25-45 mins)
Create your own personality quiz! It’s pretty rare that programmers create something completely from
scratch. In fact, it’s better to write code that you can reuse. Try reusing this code to customize your
quiz. You will have to update the index.html file in this Extension, so it is helpful if you have some
knowledge of HTML. If you don’t, no problem - see the Extension Resources for support. Below are
some of the steps you might take to get started.

Planning

Fill in this planning guide as you answer the questions in this section:

Step 9: Extensions (cont.)

QUESTION 1

Answers 1. 2. 3. 4.

Result Scoring +1 +1 +1 +1

QUESTION 2

Answers 1. 2. 3. 4.

Result Scoring +1 +1 +1 +1

QUESTION 3

Answers 1. 2. 3. 4.

Result Scoring +1 +1 +1 +1

https://www.w3schools.com/jsref/prop_pushbutton_disabled.asp
https://www.w3schools.com/js/js_htmldom_eventlistener.asp
https://www.w3schools.com/js/js_functions.asp
https://www.w3schools.com/js/js_htmldom.asp

16

To get started you might:

❏ Choose four possible final results. For this quiz choose only four possible outcomes that your
user will have at the very end. Later, you will need to map each answer to each question to one
of the possible outcomes.

❏ For example: Bee, Butterfly, Grasshopper, and Ladybug

❏ Choose three questions to ask. Map out what questions you will ask in your quiz. Each question
should be related to each other and have four possible answers.

❏ For example: What is your favorite dessert?

❏ Choose four possible answers for each question. Each answer should map directly to one of the
final outcomes of the quiz.

❏ For example: Answer 1 to Question 1 is Mochi. Mochi maps to butterfly, so by choosing
Mochi, the butterflyScore will increase by 1.

❏ Select the photo you want to represent each answer. Save it locally on your computer. If it has a
long name, you may want to rename it to something shorter and more descriptive like
q1a3-cake.jpg.

❏ Remember that free stock images or Creative Commons images are great to use as
you're working. Take a look through the options available on sites like Unsplash, Pixabay,
and Burst.

Update the text and images in the index.html file

❏ Fork your working Repl.it project. Rename it and give it a description.

❏ Upload your images to the assets folder in the Files pane on the left.

❏ Update the title of your quiz by changing the text inside the <h1> tags.

❏ Update the text and images for Question 1 and its answers using the planning guide above.

❏ Replace the current question inside the first set of <h2> tags with your first question.

❏ Update the image for the first answer. Right under <div class="answer-choice">
there is an tag that displays the image you want to use for the first answer to
Question 1. Replace the existing link with a link to the image you want to use. The link
will be assets/imageName.jpg.

❏ Update the button text. Beneath the tag you should see a <button> tag with the
answer text. For example, <button id="q1a1">Mochi</button>. Delete the
existing answer and add your own.

❏ Repeat this process for the remaining answers to Question 1.

❏ Update the text and images for the remaining questions and answers in the index.html file using
the planning guide above.

Step 9: Extensions (cont.)

https://creativecommons.org/
https://unsplash.com/
https://pixabay.com/
https://burst.shopify.com/
https://www.w3schools.com/html/html_images.asp

17

Update the Logic in the script.js file

There is logic built into the quiz that determines a person’s result based on how they answer each
question. As you noticed when reviewing the code, each answer maps to a specific result using an
event listener. You will need to update this logic based on your own questions, answers, and results. For
a full review of the logic and how it is built, see Step 4 in the Reference Guide on pg. 4.

❏ At the top under the /* Global Variables */ comment, update the score variable names
to the four possible results of your own quiz.

❏ Update the names of each variable everywhere in your program. If your program doesn’t work,
this is the first place you should check.

❏ Update the function names in each event listener. The name should be the result that the
answer maps to. For example, if the answer to q1a1 maps to the result ice cream, then you
could name the function iceCream.

❏ Replace the current function names with ones you just created in the event listeners. Be sure
they match the correct score variables.

Extension Resources

➔ Introduction to HTML
➔ Share Your Skillz Girls Who Code at Home for a hands-on introduction to HTML
➔ Heading tags (e.g. <h1>)
➔ tag
➔ <button> tag
➔ Event listeners
➔ JavaScript functions
➔ JavaScript HTML DOM

Step 9: Extensions (cont.)

Step 10: Share Your Girls Who Code at Home Project! (5 mins)
View only access (1-2 mins)
Sharing your work on Repl.it is easy! Just copy and paste the URL address of your Repl project in the
web address bar at the top. This will allow others to run your project, view your code, and fork your
project and remix on their own. We would love to see your debugging work and we know others would
as well. Share your fixed code with us!

Be sure to share this link on your
social media accounts and don’t
forget to tag @girlswhocode
#codefromhome and we might
even feature you on our account!

https://www.w3schools.com/html/html_intro.asp
https://girlswhocode.com/programs/code-at-home
https://www.w3schools.com/html/html_headings.asp
https://www.w3schools.com/html/html_images.asp
https://www.w3schools.com/tags/tag_button.asp
https://www.w3schools.com/js/js_htmldom_eventlistener.asp
https://www.w3schools.com/js/js_functions.asp
https://www.w3schools.com/js/js_htmldom.asp

Adding collaborators (2 mins)
If you want to work with a group of friends on a project, you can easily invite them to collaborate using
the Share button at the top-right of the window. This should pop out a new window with two options for
inviting others to collaborate on your project.

❏ Invite by email or Repl.it username. This option allows
you to share your project with specific people by typing in
their email address or Repl.it username if they already
have an account with Repl.it. We recommend this option
to ensure that you are sharing your project with the
correct people!

❏ Share invite link. At the bottom of the window there is a
unique invite link. You can copy and paste this link to
friends which will allow them to access your project.

Note about collaborators: Remember that adding collaborators
gives others edit access to your project. This will allow them to
change your code, name, and description. DO NOT share your
invite link on social media! Be selective on who you share these
edit rights with.

18

Stay tuned for more Girls Who Code at Home activities!

Step 10: Share Your Girls Who Code Project! (cont.)

