
Girls Who Code At Home
Debug the Missing Code: Part 1

Syntax Bugs

Part 1 of this activity will introduce you to the most common type of bug: syntax bugs. We’ll work
together to solve two syntax errors in the broken Buggy Personality Quiz. We’ll be working with
JavaScript, but the approaches apply to all languages. Don’t know JavaScript? Don’t worry, you do not
need to know it to complete this activity.

If debugging is the
process of removing
software bugs, then
programming must be
the process of putting
them in.

~ Edsger Dijkstra

2

Debugging is one of the most important skills a programmer can
develop. And it has nothing to do with insects. Bugs are errors in
your program that stop it from working the way you want it to. They
can be as simple as a spelling mistake or as big as writing your
code out of order. Bugs happen in every programming language to
programmers of all experience levels. Bugs even happen in
hardware (i.e. the circuits that run your software). Bugs can be
frustrating when you can’t figure it out and they can be enlightening
when you finally realize the problem.

Materials
➔ Repl.it Editor
➔ Buggy Personality Quiz Sample

Project
➔ Buggy Personality Quiz - Broken

Project
➔ Missing Code Reference Guide

Learning Goals
By the end of this activity you will be able to...

❏ describe why debugging is an important part of
learning how to program.

❏ identify different types of syntax bugs you
might encounter in your code.

❏ debug the syntax errors in a broken website.

Prior Knowledge
Before embarking on this project, we recommend that you:

➔ have some familiarity with core computational concepts including variables, functions, and
conditional statements in any programming language.

➔ have beginner experience using a text-based language like JavaScript, Python, Swift, etc.

If you want to learn more about
programming in JavaScript, check out

the Girls Who Code at Home Virtual Hike
activity.

If you want to practice debugging in the
Scratch, check out the Brave Not Perfect
Debugging with Scratch Girls Who Code

at Home activity.

https://repl.it/
https://bug-personality-quiz-sample-project.lizaatgwc.repl.co/
https://bug-personality-quiz-sample-project.lizaatgwc.repl.co/
https://repl.it/@GWCEducation/Buggy-Personality-Quiz-Broken-Project#README.md
https://repl.it/@GWCEducation/Buggy-Personality-Quiz-Broken-Project#README.md
https://drive.google.com/file/d/1tdIQkMgXaKNDdEdYK85upul0cbR9jrou/view?usp=sharing
https://www.w3schools.com/js/js_variables.asp
https://www.taniarascia.com/how-to-define-functions-in-javascript/
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Building_blocks/conditionals
https://girlswhocode.com/assets/downloads/craft-prod/downloads/Girls-Who-Code-At-Home-Virtual-Hike.pdf
https://girlswhocode.com/assets/downloads/craft-prod/downloads/Girls-Who-Code-At-Home-Brave-Not-Perfect.pdf
https://girlswhocode.com/assets/downloads/craft-prod/downloads/Girls-Who-Code-At-Home-Brave-Not-Perfect.pdf

3

Reflect
Take some time to learn more about the contributions female-identifying people have made to computer
science. As you explore the Missing Code website, choose one fact that you want to learn more about and
spend a few minutes researching it. When you are finished, reflect on the question below.

Share your responses with a family member or friend. Encourage others to read more about the
contributions of women and female-identifying people to computer science fields!

It’s Computer Science Ed Week and we’ve teamed up with IF/THEN®, to celebrate women in technology.
The internet as we know it wouldn’t be possible without the contributions of women in tech. And yet,
despite the fact that 26% of coders are female, there is a stubborn perception out there that the products
we use everyday are built by men. Wrong!

Checkout www.missing-code.com, to see what could happen to your favorite platforms in a world where
women don’t code.

PURPOSE

The internet won’t necessarily break if women and female-identifying people
stop coding, but it will have damaging effects in other ways. How does this
lack of representation in computer science impact individuals and
communities?

http://www.missing-code.com

4

Step 1: Welcome the bugs (3-5 mins)
Close your eyes and think about a time you encountered a problem that you didn’t know how to solve,
whether nailing a new viral TikTok dance, getting your favorite cookie recipe right, or building the
perfect abode in Animal Crossing. Think about the process you took to figure it out. Think about the
emotions and mindset you had along the way. Now - eyes still closed - remember how awesome it
felt to find a solution.

Open your eyes. With all those warm fuzzies still bouncing around,
let us take this opportunity to tell you that errors will happen in your code.

 It doesn’t matter if you are just getting started or if you’ve been programming for years in three
languages. Your programs will break. By break we mean that they won’t work as intended, not

 that your computer will explode. This might seem like a bummer, but it’s not. Solving these
 errors is the best way to learn!

Source: Pixabay Source: The Met

��
🦋

�
�

�� �� 🐜 🐜 🐜 🐜 🐜 🐜

Embrace your bugs (1 min)
We call these errors bugs. We call the process of locating and
fixing these errors debugging.

But bugs are not just an error in your code. They are a
technical problem in your software program AND a gap in
your understanding between what you wanted to happen and
what actually happened. This is precisely why bugs are so
frustrating, but also helpful. Finding and fixing a bug means
that you have a chance to update your program and your
understanding of how to write a program.

We’ve already updated our understanding that bugs happen
no matter what your level of expertise is. So, since we’ll be
meeting old and new bugs for quite a while, it’s important to
develop a process for solving them.

Source: National Geographic

They are called bugs because back in
the day when computers were made
of vacuum tubes, actual insects could
get inside the tubes and cause them
to malfunction. We will be talking
about software bugs in this activity,
but bugs can happen in your hardware
as well!

Step 2: Recognize your bugs (7-10 mins)
The first step in debugging is knowing when you have a bug. But what actually happens when you have
one? What form can they take? Is my project destroyed forever?! (Highly, highly unlikely.) Let’s start with
these questions.

Where do bugs live? (1 min)
Bugs can happen at any point in your program. You might find them hiding in your variables, functions,
conditionals, and more.

https://pixabay.com/photos/baklava-with-walnut-oriental-kitchen-4183183/
https://www.metmuseum.org/blogs/collection-insights/2020/animal-crossing-new-horizons-qr-code
https://www.nationalgeographic.org/thisday/sep9/worlds-first-computer-bug/

Where do bugs live? (1 min)
Bugs can happen at any point in your program. You might find them hiding in your variables, functions,
conditionals, and more.

5

// The variable is not declared: var myNumber = 1;
myNumber = 1;

// There is no closing curly bracket to our conditional
if(myNumber > 10){
 addOne();

// The variable name is misspelled inside the function.
function addOne(){
 myNumbr += 1;
}

What happens when I have a bug? (1 min)

All bugs affect the functionality of your program. Some bugs are small and some bugs are big. Bugs
would be much more fun if they caused images to stretch, buttons to fall off the screen, and text to fly
around, but 99.9% of the time this isn’t the case.

Instead, a bug might…

➔ cause a button to stop working on a website.
➔ prevent an image from displaying.
➔ send a person to the wrong page of a website.
➔ stop keeping track of a player’s score when it reaches a certain value.
➔ cause a website to display incorrectly in one or more browsers.

And of course, a big bug can cause entire websites, games, and more to just stop working because the
program can’t compile and/or run the way it should.

If you’ve ever seen a 404 page,
you’ve seen a bug in action.

Source: Pixar

Step 2: Recognize your bugs (cont.)

https://www.w3schools.com/js/js_variables.asp
https://www.taniarascia.com/how-to-define-functions-in-javascript/
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Building_blocks/conditionals
https://www.pixar.com/404

For more on JavaScript syntax, check out this guide from Tania
Rascia.

Are there different types of bugs? (5-7 min)
Yup! Categorizing bugs is helpful since identifying the error is half the battle. There are syntax bugs and
logic bugs. We’ll focus on syntax bugs in this activity and cover logic bugs in the next activity.

Syntax bugs

You may have heard the word syntax in reference to grammar. What does that have to do with
programming? A lot! The syntax of a programming language is like the syntax of any other language.
There are rules that letters (e.g. b and B), numbers (e.g. 11 or 3.14), and symbols (e.g. { } or #) must
follow to process and run a program. Different languages have different syntax.

For example, JavaScript is a programming language that is mainly used to add interactivity to websites
and it is the language we will use in this activity. Let’s look at two of the most recognizable syntax rules
in JavaScript:

1. JavaScript uses curly brackets { } and parentheses () to separate chunks of code, like
functions or conditional statements. Other languages like Python use indentation instead of
curly brackets to separate chunks of code.

2. JavaScript uses semicolons ; to end a statement in your code. A statement is an instruction
you are giving your program like console.log(score);. Just as you must use a period at the
end of a sentence, you should end your statements with a semicolon.

Here are a few guidelines to help your avoid the most common syntax bugs:

6

It’s easy to lose or add an extra
curly bracket or parenthesis
when you group chunks of
code together. Remember that
all curly brackets and
parentheses should have a
partner.

function restartQuiz(){
 if(score > 10){
 score = 0;
 }
}

function restartQuiz(){
 if(score > 10){
 score = 0;
 }

You cannot interchange
lowercase and uppercase
letters.

var bee is not the same as
var Bee

function is not the same as
Function.

For example, we use variables
to store data so we can
change them or compare them
to other values when we need
to. Because you will use them
repeatedly, there is a higher
chance you might misspell
them at some point.

var mothScore = 0;

if(motScore > 2)

mothScre = 10;

Lots of syntax errors are
spelling errors.

Variables, function names,
and keywords are case

sensitive.

If you open it,
you must close it.

Step 2: Recognize your bugs (cont.)

https://www.taniarascia.com/understanding-syntax-and-code-structure-in-javascript/

7

Check your ideas in the Reference Guide on pg 2.

Step 3: Examine the buggy site (3-5 mins)
Before we can debug anything, we need to understand the problem. The best way to start this process
is to test the program. First you’ll take the quiz on the functioning site. Next, you’ll check out the buggy
version to investigate how its behavior compares to the working version.

Take the fixed Buggy Personality Quiz (3-5 mins)
Follow the link to the fixed version of the quiz. Now take the quiz to see which bug you are! When you’re
finished, think about the following questions. Write down your ideas if it’s helpful.

❏ What actions did you take to get your result?
❏ How do you think the program figured out which bug you are?

Take the broken quiz (1-2 mins)
Let’s see how the broken quiz compares. Follow this link to the buggy version and test it out. Take the
quiz a few times to figure out how the program behaves. Try answering the questions in different
configurations to see if anything changes. If everything is properly broken, the quiz will never ever return
the result.

https://bug-personality-quiz-sample-project.lizaatgwc.repl.co/
https://buggy-personality-quiz-broken-project.gwceducation.repl.co/

8

Step 4: Get started with Repl.it (10 - 15 mins)
For this activity we will be using the Repl.it web editor. Repl.it is a free, collaborative, browser-based
editor that supports multiple programming languages. This powerful tool can even allow you to code
and talk with a group of friends all at the same time!

Create an account (5-7 mins)
❏ Sign up or login to Repl.it. In order to save your work you will need to create an account. Follow

the instructions on the sign up form to create an account. If you are under 13 you’ll need your
parent’s email address to sign up.

❏ Follow the instructions to create an account. You may choose to sign up with your Google,
GitHub, or Facebook account for faster login.

Fork the broken Buggy Personality Quiz (2-3 mins)
❏ Open the broken Buggy Personality Quiz.
❏ Create a copy of the broken Buggy Personality Quiz by clicking the Fork button next to the Run

button. Creating a fork duplicates the entire project and adds it to your Repl account as a new
project.

Add a project description (1-2 mins)
Now that you have your own copy of the buggy quiz, let’s add a brief project description to our Repl.

You can fork other people’s source code or you can fork
your own projects if, say, you are making bug fixes, but
want to have an older version of your code that you can go
back to in case you create more errors while debugging.

❏ Open the project description. Locate your project
name at the top left of your screen. Click the small
down arrow to the right of the name. This should
open a new window containing your project name
and an area for a brief description.

❏ Add a brief description. Something you might want
to include in your description may include:
❏ Overview: How is it supposed to work?
❏ Instructions: Are there any specific

instructions needed to run your project?
❏ Attributions: Did you get help from others or

additional resources? Make sure you shout
out these people and resources!

Learn more about Repl.it in the Reference Guide on pg 3-4.

https://repl.it/
https://repl.it/signup
https://repl.it/login
https://repl.it/@GWCEducation/Buggy-Personality-Quiz-Broken-Project#README.md

Explore the Editor View (3-5 mins)
Let’s take a look into the editor view for Repl.it. Now that we created a new project, we need to
understand where to code, navigate between files and assets, and how to save and run your code!

9

➔ Files Pane: This window displays all of your project files. For this activity, we will only be
working in one file, script.js, but you will also see index.html, style.css, and README.md files.
Click on the README file for more information about what each of these files does.

➔ Menu Bar: This bar will allow you to change the view in the file pane. Some options include
changing version control, adding packages, and updating settings. In the settings you can
customize the layout, theme, font size, and other text settings.

➔ Code Editor: This is where you will write your code!
➔ Run Button: After making changes to your code, click the run button at the top of the editor. You

should see your result in the output/console window on the right.
➔ Website: This window displays your website. If you want to view it as a full webpage, click the

new tab button in the top right corner.
➔ Console Window: This displays any output in your code. All outputs will be visible, so if you click

the run button multiple times, each result will be displayed here.

You may have noticed that there is no save button in Repl.it. As long as you have internet connection, all
changes in your code will be saved automatically. Once you click the Run button your Repl is saved, so
make sure you always run your code before closing your editor!

Step 4: Get started with Repl.it (cont.)

10

Step 5: Fix the first bug (5-7 mins)
In Step 3, we observed how our broken quiz behaved and described how it is supposed to track a
person’s bug score. Now it’s time to review the actual code in our script.js file to see where the
problems are.

Press the Run button in the center of the top navigation bar. Notice the console on the bottom right side
of the screen.

SyntaxError: Unexpected end of input at /script.js:111:1

We have our first error message! Error messages are the best. They give us a clue to what the problem
is and help us locate it. Stop for a moment and try to decode this message:

➔ SyntaxError means that a problem with your syntax (i.e. spelling, punctuation, formatting,
etc.) is causing the bug.

➔ Unexpected end of input means the computer didn’t know where to end. It is a common
error message to get if you forget to close a curly bracket { } somewhere in your code.

➔ at /script.js means your error is in the script.js file.
➔ 111:1 indicates that your error is on line 111 in the first space.

Now that’s a lot of information that we can work with. Let’s start by going to line 109. That’s weird. It
seems like we already have a curly bracket there. Try clicking on the curly bracket and see what
happens.

101
102
103
104
105
106
107
108
109

// Restart quiz
function restartQuiz() {
 result.innerHTML = "You are a...";
 questionCount = 0;
 beeScore = 0;
 butterflyScore = 0;
 grasshopperScore = 0;
 ladybugScore = 0;
}

Here’s a hot tip: In most IDEs when you move your cursor next to one curly bracket or parenthesis, it
highlights the partner curly bracket or parenthesis in the existing code. Using this technique, we know that:

1. The curly bracket on line 109 already has its partner on line 102
2. There are no other open curly brackets in the restartQuiz function.

This means we need our detective hats!

Click the closing curly bracket

11

Follow the steps below, then check your code in the Reference Guide:

❏ Look nearby. If the error doesn’t appear directly where the message said it would, try looking
nearby. There’s no code after the reStartQuiz function, so let’s examine the updateResult
function right before it starting on line 87:

110
111
112
113
114
115
116
117
118
119
120
121
122
123

// Update quiz result
function updateResult() {
 if (beeScore >= 2) {
 result.innerHTML = "You are a bee!";
 } else if (butterflyScore >= 2) {
 result.innerHTML = "You are a butterfly!";
 } else if (grasshopperScore >= 2) {
 result.innerHTML = "You are a grasshopper!";
 } else if (ladybugScore >= 2) {
 result.innerHTML = "You are a ladybug!";
 } else {
 result.innerHTML = "Hmm...not sure. Try again later.";

}

❏ Make observations. What is the first thing you notice? A LOT of curly brackets! This is a prime
bug location. The updateResult function has a long conditional statement that evaluates a
person’s score and returns which bug they are.

❏ Think about what you need. At this point, it’s helpful to move back and think about what you
know you need. An open curly bracket at the beginning of the function and a closed curly
bracket at the end. If there was nothing inside, it would appear like this:

❏ Identify your tools. What tools do you have or know to solve this? Earlier we learned that we can
use our cursor to display the partner of a curly bracket. Let’s try this.

❏ Test it. Check each curly bracket in the updateResult function to see which one partners to
the first open curly bracket.

❏ Make your changes. You only need to make one change.

❏ Run the program. Test your program to see if it runs without an error.

function updateResult(){

}

Check your code in the Reference Guide on pg 4-5.

Step 5: Fix the first bug (cont.)

12

Step 6: Solve the second bug (3-5 mins)
We resolved our first bug triumphantly - now let’s look into that second error message:

TypeError: document.getElementbyId is not a function at /script.js:20:21

We have our first error message! Error messages are the best. They give us a clue to what the problem
is and help us locate it. Stop for a moment and try to decode this message:

➔ TypeError means that the program can’t run the operation because a value isn’t the type of
value the computer expected. In this case, the value is a function name.

➔ document.getElementbyId is the name of the function that is causing the bug.
➔ is not a function means the computer doesn’t recognize this as a function.
➔ at /script.js means your error is in the script.js file.
➔ 20:21 indicates that your error is on line 20 in the 21st space.

Based on what we learned in the last step, we know that the error is in the script.js file on line 20.

18
19
19
19
20
19
21

var q1a1 = document.getElementById("q1a1"); // Store HTML element for
question 1 answer 1 button
var q1a2 = document.getElementById("q1a2"); // Store HTML element for
question 1 answer 2 button
var q1a3 = document.getElementbyId("q1a3"); // Store HTML element for
question 1 answer 3 button
var q1a4 = document.getElementById("q1a4"); // Store HTML element for
question 1 answer 4 button

The error message says that document.getElementbyId is not a function. But we know that this is a
function because we use it in many other places. So what’s wrong? Follow these steps to figure it out:

❏ Look for patterns. Do you see any differences in the other locations where it is used?

var q1a3 = document.getElementbyId("q1a3"); // Store HTML element for question 1
answer 3 button

❏ Try making any changes. If you think you know where the problem is, fix it.

❏ Run the program. Test your program to see if it runs without an error.

Check your code in the Reference Guide on pg 6.

13

You successfully debugged all the syntax errors. When you run the program, you should
no longer see an error message. However, if you tried to take the quiz, you may have
noticed that it still isn’t working. That is because there is one bug left: a logic bug. These
bugs happen because there is a problem with the program flow or the order that your
lines of code execute. In the next activity, we will explore a set of debugging strategies
you can use to fix this bug and any other bug you might encounter in the future!

Step 9: Share Your Girls Who Code at Home Project! (5 mins)

View only access (1-2 mins)
Sharing your work on Repl.it is easy! Just copy and paste the URL address of your Repl project in the web
address bar at the top. This will allow others to run your project, view your code, and fork your project and
remix on their own. We would love to see your debugging work and we know others would as well. Share
your fixed code with us! Be sure to share this link on your social media accounts and don’t forget to tag
@girlswhocode #codefromhome and we might even feature you on our account!

Congratulations!

Adding collaborators (2 mins)
If you want to work with a group of friends on a project, you can easily invite them to collaborate using
the Share button at the top-right of the window. This should pop out a new window with two options for
inviting others to collaborate on your project.

14

❏ Invite by email or Repl.it username. This option allows
you to share your project with specific people by typing in
their email address or Repl.it username if they already
have an account with Repl.it. We recommend this option
to ensure that you are sharing your project with the
correct people!

❏ Share invite link. At the bottom of the window there is a
unique invite link. You can copy and paste this link to
friends which will allow them to access your project.

Note about collaborators: Remember that adding collaborators
gives others edit access to your project. This will allow them to
change your code, name, and description. DO NOT share your
invite link on social media! Be selective on who you share these
edit rights with.

Stay tuned for more Debug the Missing Code Part 2!

Step 9: Share Your Girls Who Code Project! (cont.)

